We report the fabrication and performance of all-metallic three-terminal devices with tantalum diselenide thin-film conducting channels. For this proof-of-concept demonstration, the layers of 2H-TaSe2 were exfoliated mechanically from single crystals grown by the chemical vapor transport method. Devices with nanometer-scale thicknesses exhibit strongly non-linear current-voltage characteristics, unusual optical response, and electrical gating at room temperature. We have found that the drain-source current in thin-film 2H-TaSe2–Ti/Au devices reproducibly shows an abrupt transition from a highly resistive to a conductive state, with the threshold tunable via the gate voltage. Such current-voltage characteristics can be used, in principle, for implementing radiation-hard all-metallic logic circuits. These results may open new application space for thin films of van der Waals materials.

1.
A. N.
Korotkov
,
R. H.
Chen
, and
K. K.
Likharev
,
J. Appl. Phys.
78
,
2520
(
1995
).
2.
V. A.
Zhukov
and
V. G.
Maslov
,
Russ. Microelectron.
42
,
102
(
2013
).
3.
V. A.
Krupenin
,
A. B.
Zorin
,
D. E.
Presnov
,
M. N.
Savvateev
, and
J.
Niemeyer
, “
Chernogolovka 2000
,”
Usp. Fiz. Nauk (Suppl.)
44
,
113
(
2001
).
4.
S. V.
Rotkin
and
K.
Hess
, “
Principles of metallic field effect transistor
,” in
Technical Proceedings of the 2004 NSTI Nanotechnology Conference and Trade Show
(
2004
), p.
37
.
5.
Q.
Liu
,
L.
Yu
,
H.
Li
,
R.
Qin
,
Z.
Jing
,
J.
Zheng
,
Z.
Gao
, and
J.
Lu
,
J. Phys. Chem. C
115
,
6933
(
2011
).
6.
B.
Chandrasekara
,
Int. J. Sci. Eng. Res.
4
,
1
(
2013
).
7.
H. H.
Cheng
,
C. N.
Andrew
, and
M. M.
Alkaisi
,
Microelectron. Eng.
83
,
1749
(
2006
).
8.
M.
Johnson
, “
The all-metal spin transistor
,”
IEEE Spectrum
31
,
47
(
1994
).
9.
F. J.
Jedema
,
M. S.
Nijboer
,
A. T.
Filip
, and
B. J.
van Wees
,
Phys. Rev. B
67
,
085319
(
2003
).
10.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
11.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. V.
Grigorieva
,
S. V.
Dubonos
, and
A. A.
Firsov
,
Nature
438
,
197
(
2005
).
12.
Y.
Zhang
,
Y.-W.
Tan
,
H. L.
Stormer
, and
P.
Kim
,
Nature
438
,
201
(
2005
).
13.
F.
Schwierz
,
Nat. Nanotechnol.
5
,
487
(
2010
).
14.
G.
Liu
,
W.
Stillman
,
S.
Rumyantsev
,
Q.
Shao
,
M.
Shur
, and
A. A.
Balandin
,
Appl. Phys. Lett.
95
,
033103
(
2009
);
G.
Liu
,
S.
Rumyantsev
,
M. S.
Shur
, and
A. A.
Balandin
,
Appl. Phys. Lett.
102
,
093111
(
2013
).
15.
A. A.
Balandin
,
Nat. Nanotechnol.
8
,
549
(
2013
).
16.
X.
Yang
,
G.
Liu
,
A. A.
Balandin
, and
K.
Mohanram
,
ACS Nano
4
,
5532
(
2010
).
17.
X.
Yang
,
G.
Liu
,
M.
Rostami
,
A. A.
Balandin
, and
K.
Mohanram
,
IEEE Electron Device Lett.
32
,
1328
(
2011
).
18.
D.
Teweldebrhan
and
A. A.
Balandin
,
Appl. Phys. Lett.
94
,
013101
(
2009
).
19.
M.
Chhowalla
,
H. S.
Shin
,
G.
Eda
,
L.-J.
Li
,
K. P.
Loh
, and
H.
Zhang
,
Nat. Chem.
5
,
263
(
2013
).
20.
J.
Khan
,
C. M.
Nolen
,
D.
Teweldebrhan
,
D.
Wickramaratne
,
R. K.
Lake
, and
A. A.
Balandin
,
Appl. Phys. Lett.
100
,
043109
(
2012
).
21.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
,
Phys. Rev. Lett.
105
,
136805
(
2010
).
22.
K.
Rossnagel
and
N. V.
Smith
,
Phys. Rev. B
76
,
073102
(
2007
).
23.
R.
Brouwer
and
F.
Jellinek
,
Physica B+C
99
,
51
(
1980
).
24.
Z.
Yan
,
C.
Jiang
,
T. R.
Pope
,
C. F.
Tsang
,
J. L.
Stickney
,
P.
Goli
,
J.
Renteria
,
T. T.
Salguero
, and
A. A.
Balandin
,
J. Appl. Phys.
114
,
204301
(
2013
).
25.
S.
Sugai
and
K.
Murase
,
Phys. Rev. B
25
,
2418
(
1982
);
A.
Castellanos-Gomez
 et al,
Nano Research
6
,
191
(
2013
);
E.
Coronado
 et al,
J. Mater. Chem. C
1
,
7692
(
2013
).
26.
N.
Ogawa
and
K.
Miyano
,
Phys. Rev. B
70
,
075111
(
2004
).
27.
T. L.
Adelman
,
S. V.
Zaitsev-Zotov
, and
R. E.
Thorne
,
Phys. Rev. Lett.
74
,
5264
(
1995
).
28.
G.
Gruner
,
Rev. Mod. Phys.
60
,
1129
(
1988
).
29.
S. V.
Zaitsev-Zotov
,
Phys. - Usp.
47
,
533
(
2004
).
30.
S.
Yue
,
M.
Tian
, and
Y.
Zhang
,
Phys. Rev. B
64
,
113102
(
2001
).
31.
D. E.
Moncton
,
J. D.
Axe
, and
F. J.
Di Salvo
,
Phys. Rev. Lett.
34
,
734
(
1975
).
32.
P.
Goli
,
J.
Khan
,
D.
Wickramaratne
,
R. K.
Lake
, and
A. A.
Balandin
,
Nano Lett.
12
,
5941
(
2012
).
33.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
34.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
);
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
124
,
219906
(
2006
).
35.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
36.
A. K.
Geim
and
I. V.
Grigorieva
,
Nature
499
,
419
(
2013
).
37.
S.
Fisher
,
A.
Teman
,
D.
Vaysman
,
A.
Gertsman
,
O.
Yadid-Pecht
, and
A.
Fish
, “
Digital Subthreshold Logic Design – Motivation and Challenges
,” in
IEEE 25th Convention of Electrical and Electronics Engineers in Israel (IEEEI'08)
(
2008
), p.
702
.
38.
G.
Liu
,
S.
Ahsan
,
A. G.
Khitun
,
R. K.
Lake
, and
A. A.
Balandin
,
J. Appl. Phys.
114
,
154310
(
2013
).
You do not currently have access to this content.