Multiple-beam Fabry-Perot (FP) interferences occur in liquid crystal retarders (LCR) devoid of an antireflective coating. In this work, a highly accurate method to obtain the spectral retardance of such devices is presented. On the basis of a simple model of the LCR that includes FP effects and by using a voltage transfer function, we show how the FP features in the transmission spectrum can be used to accurately retrieve the ordinary and extraordinary spectral phase delays, and the voltage dependence of the latter. As a consequence, the modulation characteristics of the device are fully determined with high accuracy by means of a few off-state physical parameters which are wavelength-dependent, and a single voltage transfer function that is valid within the spectral range of characterization.
Skip Nav Destination
,
,
,
,
Article navigation
21 January 2014
Research Article|
January 15 2014
Highly accurate spectral retardance characterization of a liquid crystal retarder including Fabry-Perot interference effects Available to Purchase
Asticio Vargas;
Asticio Vargas
1
Departamento de Ciencias Físicas, Universidad de La Frontera
, Temuco, Chile
2
Center for Optics and Photonics, Universidad de Concepción
, Casilla 4016, Concepción, Chile
Search for other works by this author on:
María del Mar Sánchez-López;
María del Mar Sánchez-López
3
Instituto de Bioingeniería, Universidad Miguel Hernández
, 03202 Elche, Spain
Search for other works by this author on:
Pascuala García-Martínez;
Pascuala García-Martínez
4
Departament d'Òptica, Universitat de València
, 45100 Burjassot, Spain
Search for other works by this author on:
Julia Arias;
Julia Arias
5
Departamento de Ciencia de Materiales, Óptica y Tecnología Electrónica, Universidad Miguel Hernández
, 03202 Elche, Spain
Search for other works by this author on:
Ignacio Moreno
Ignacio Moreno
5
Departamento de Ciencia de Materiales, Óptica y Tecnología Electrónica, Universidad Miguel Hernández
, 03202 Elche, Spain
Search for other works by this author on:
Asticio Vargas
1,2
María del Mar Sánchez-López
3
Pascuala García-Martínez
4
Julia Arias
5
Ignacio Moreno
5
1
Departamento de Ciencias Físicas, Universidad de La Frontera
, Temuco, Chile
2
Center for Optics and Photonics, Universidad de Concepción
, Casilla 4016, Concepción, Chile
3
Instituto de Bioingeniería, Universidad Miguel Hernández
, 03202 Elche, Spain
4
Departament d'Òptica, Universitat de València
, 45100 Burjassot, Spain
5
Departamento de Ciencia de Materiales, Óptica y Tecnología Electrónica, Universidad Miguel Hernández
, 03202 Elche, Spain
J. Appl. Phys. 115, 033101 (2014)
Article history
Received:
November 07 2013
Accepted:
December 23 2013
Citation
Asticio Vargas, María del Mar Sánchez-López, Pascuala García-Martínez, Julia Arias, Ignacio Moreno; Highly accurate spectral retardance characterization of a liquid crystal retarder including Fabry-Perot interference effects. J. Appl. Phys. 21 January 2014; 115 (3): 033101. https://doi.org/10.1063/1.4861635
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Re-examination of important defect complexes in silicon: From microelectronics to quantum computing
P. P. Filippatos, A. Chroneos, et al.
Tutorial: Simulating modern magnetic material systems in mumax3
Jonas J. Joos, Pedram Bassirian, et al.
Piezoelectric thin films and their applications in MEMS: A review
Jinpeng Liu, Hua Tan, et al.
Related Content
Rapid modulation of left- and right-handed optical vortices for precise measurements of helical dichroism
Rev. Sci. Instrum. (May 2024)
Experimental realization of scalar and vector perfect Laguerre–Gaussian beams
Appl. Phys. Lett. (July 2021)
Debye-diffraction-based concentric energy analysis on two-photon photoluminescence imaging of gold nanorods under radial polarization illumination
J. Appl. Phys. (October 2012)
Experimental generation of a radially polarized beam with controllable spatial coherence
Appl. Phys. Lett. (February 2012)
A Green's function based analytical method for forward and inverse modeling of quasi-periodic nanostructured surfaces
J. Appl. Phys. (November 2017)