Fully dense submicron grain size alumina samples were manufactured from alumina nano-powder using Spark Plasma Sintering and tested in two kinds of VISAR-instrumented planar impact tests. In the first kind, samples were loaded by 1-mm tungsten impactors, accelerated to a velocity of about 1 km/s. These tests were aimed at studying the Hugoniot elastic limit (HEL) of Spark Plasma Sintering (SPS)-processed alumina and the decay, with propagation distance, of the elastic precursor wave. In the tests of the second kind, alumina samples of 3-mm thickness were loaded by 1-mm copper impactors accelerated to 100–1000 m/s. These tests were aimed at studying the dynamic tensile (spall) strength of the alumina specimens. The tensile fracture of the un-alloyed alumina shows a monotonic decline of the spall strength with the amplitude of the loading stress pulse. Analysis of the decay of the elastic precursor wave allowed determining the rate of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced inelastic deformation and to clarify the mechanisms responsible for the deformation. The 1-% addition of Cr2O3 decreases the HEL of the SPS-processed alumina by 5-% and its spall strength by 50% but barely affects its static properties.

1.
T. J.
Ahrens
,
W. H.
Gust
, and
E. B.
Royce
,
J. Appl. Phys.
39
,
4610
(
1968
).
2.
D. E.
Munson
and
R. J.
Lawrence
,
J. Appl. Phys.
50
,
6272
(
1979
).
3.
L. M.
Barker
and
R. E.
Hollenbach
,
J. Appl. Phys.
43
,
4669
(
1972
).
4.
N. K.
Bourne
,
Z.
Rosenberg
,
I. G.
Crouch
, and
J. E.
Field
,
AIP Conf. Proc.
309
,
769
(
1994
).
5.
N. K.
Bourne
,
Z.
Rosenberg
,
I. G.
Crouch
, and
J. E.
Field
,
Proc. R. Soc. A
446
,
309
(
1994
).
6.
N. H.
Murray
,
N. K.
Bourne
, and
Z.
Rosenberg
,
AIP Conf. Proc.
370
,
491
(
1996
).
7.
N. H.
Murray
,
N. K.
Bourne
,
Z.
Rosenberg
, and
J. E.
Field
,
J. Appl. Phys.
84
,
734
(
1998
).
8.
N. H.
Murray
,
N. K.
Bourne
,
Z.
Rosenberg
, and
J. E.
Field
,
J. Appl. Phys.
84
,
4866
(
1998
).
9.
W. H.
Gust
and
E. B.
Royce
,
J. Appl. Phys.
42
,
276
(
1971
).
10.
W. H.
Gust
,
A. C.
Holt
, and
E. B.
Royce
,
J. Appl. Phys.
44
,
550
(
1973
).
11.
J. M.
Staehler
,
W. W.
Predebon
, and
B. J.
Pletka
,
AIP Conf. Proc.
309
,
745
(
1994
).
12.
D. P.
Dandekar
and
P.
Bartkowski
,
AIP Conf. Proc.
309
,
733
(
1994
).
13.
W. D.
Reinhart
and
L. C.
Chhabildas
,
Int. J. Impact Eng.
29
,
601
(
2003
).
14.
D. P.
Dandekar
,
J. W.
McCauley
,
W. H.
Green
,
N. K.
Bourne
, and
M. W.
Chen
, “
Global mechanical response and its relation to deformation and failure modes of various length scales under shock impact in alumina AD995 armor ceramic
,” Army Research Laboratory, March
2008
.
15.
Z.
Rosenberg
,
N. S.
Brar
, and
S. J.
Bless
, in
2nd International Conference on Mechanical and Physical Behavior of Materials under Dynamic Loading
, les Editions des Physique (
1988
), p.
707
.
16.
J.
Carnoux
and
F.
Longy
, in
Shock Waves in Condensed Matter-1987, North-Holland, Amsterdam
, edited by
S. C.
Schmidt
and
N. C.
Holmes
(
1988
), pp.
293
296
.
17.
D. E.
Grady
, “
Shock properties of high-strength ceramics
,”
Sandia Report No. 94-2869C, Sandia National Laboratories
, Albuqurque, New Mexico,
1994
.
18.
H.
Marom
,
D.
Sherman
, and
Z.
Rosenberg
,
J. Appl. Phys.
88
,
5666
(
2000
).
19.
F.
Longy
and
J.
Cagnoux
,
J. Am. Ceram. Soc.
72
(
6
),
971
979
(
1989
).
20.
N. K.
Bourne
,
W. H.
Green
, and
D. P.
Dandekar
,
Proc. R. Soc. A
462
,
3197
(
2006
).
21.
N. H.
Murray
, “
The response of alumina ceramics to plate impact loading
,” Ph.D. thesis,
University of Cambridge
,
1997
.
22.
S.
Zhan-Feng
,
H.
Hong-Liang
,
L.
Ping
, and
L.
Qing-Zhong
,
Acta Phys. Sin.
61
(
9
),
096201
(
2012
).
23.
Z.
Shen
,
M.
Johnson
,
Z.
Zhao
, and
M.
Nygren
,
J. Am. Ceram. Soc.
85
,
1921
(
2002
).
24.
M.
Tokita
, “
Mechanism of spark plasma sintering
,” in
Proceedings of the International Symposium on Microwave, Plasma and Thermochemical Processing of Advanced Materials
, edited by
S.
Miyake
, and
M.
Samandi
(
JWRI, Osaka Universities
,
Japan
,
1997
), pp.
69
76
.
25.
G. E.
Duvall
,
Propagation of Plane Shock Waves in a Stress-Relaxing Medium, Stress Waves in Anelastic Solids
, edited by
H.
Kolsky
and
W.
Prager
(
Springer-Verlag
,
Berlin
,
1964
), pp.
20
32
.
26.
D. E.
Grady
, in
EXPLOMET ''85 - International Conference on Metallurgical Applications of Shock Wave and High Strain-Rate Phenomena
, edited by L. E. Murr, K. P. Staudhammer, and M. A. Meyers (
Marcel Dekker Inc
,
New York, Portland
,
1986
), pp.
763
780
.
27.
L. M.
Barker
and
R. E.
Hollenbach
,
J. Appl. Phys.
41
,
4208
(
1970
).
28.
J.
Wackerle
,
H. L.
Stacy
, and
J. C.
Dallman
, “
Refractive index effects for shocked windows in interface velocimetry
,”
Proc. SPIE
832
,
72
82
(
1988
).
29.
P.
Bartkowski
and
D. I.
Dandekar
,
AIP Conf. Proc.
370
,
535
(
1996
).
30.
T.
Antoun
,
L.
Seaman
,
D.
Curran
,
G. I.
Kanel
,
S. V.
Razorenov
, and
A. V.
Utkin
,
Spall Fracture
(
Springer
,
New-York, Berlin, Heidelberg
,
2002
), p.
217
.
31.
G. I.
Kanel
,
S. V.
Razorenov
, and
V. E.
Fortov
,
Shock-Wave Phenomena and the Properties of Condensed Matter
(
Springer
,
New York
,
2004
), p.
33
.
32.
J. R.
Asay
,
G. R.
Fowles
, and
Y.
Gupta
,
J. Appl. Phys.
43
,
744
(
1972
).
33.
J.
Lankford
,
J. Mater. Sci.
16
,
1567
(
1981
).
34.
E. B.
Zaretsky
,
J. Appl. Phys.
114
,
183518
(
2013
).
35.
A. D.
Brailsford
,
J. Appl. Phys.
43
,
1380
(
1972
).
36.
P. P.
Gillis
,
J. J.
Gilman
, and
J. W.
Taylor
,
Philos. Mag.
20
,
279
(
1969
).
37.
D. E.
Grady
and
J.
Lipkin
,
Geophys. Res. Lett.
7
,
255
, doi: (
1980
).
38.
D. E.
Grady
and
M. E.
Kipp
,
Mech. Mater.
4
,
311
(
1985
).
39.
G.
Ravichandran
and
G.
Subhash
,
Int. J. Solids Struct.
32
,
2627
(
1995
).
40.
J.
Lankford
,
Commun. Am. Ceram. Soc.
64
,
C33
(
1981
).
41.
G.
Subhash
and
G.
Ravichandran
,
J. Mater. Sci. Lett.
33
,
1933
(
1998
).
You do not currently have access to this content.