A complete understanding of domain wall motion in magnetic nanowires is required to enable future nanowire based spintronics devices to work reliably. The production process dictates that the samples are polycrystalline. In this contribution, we present a method to investigate the effects of material grains on domain wall motion using the GPU-based micromagnetic software package MuMax3. We use this method to study current-driven vortex domain wall motion in polycrystalline Permalloy nanowires and find that the influence of material grains is fourfold: an extrinsic pinning at low current densities, an increasing effective damping with disorder strength, shifts in the Walker breakdown current density, and the possibility of the vortex core to switch polarity at grain boundaries.

1.
D. A.
Allwood
,
G.
Xiong
,
C. C.
Faulkner
,
D.
Atkinson
,
D.
Petit
, and
R. P.
Cowburn
, “
Magnetic domain-wall logic
,”
Science
309
(
5741
),
1688
1692
(
2005
).
2.
S. E.
Barnes
,
J.
Ieda
, and
S.
Maekawa
, “
Magnetic memory and current amplification devices using moving domain walls
,”
Appl. Phys. Lett.
89
(
12
),
122507
(
2006
).
3.
S. P.
Parkin
,
M.
Hayashi
, and
L.
Thomas
, “
Magnetic domain-wall racetrack memory
,”
Science
320
(
5873
),
190
194
(
2008
).
4.
A.
Thiaville
and
Y.
Nakatani
,
Spin Dynamics in Confined Magnetic Structures III
, Topics in Applied Physics Vol.
101/2006
(
Springer
,
Berlin–Heidelberg
,
2006
), Chap. Domain-wall dynamics in nanowires and nanostrips, pp.
161
205
.
5.
O.
Boulle
,
G.
Malinowski
, and
M.
Kläui
, “
Current-induced domain wall motion in nanoscale ferromagnetic elements
,”
Mater. Sci. Eng., R
72
(
9
),
159
187
(
2011
).
6.
Y.
Nakatani
,
A.
Thiaville
, and
J.
Miltat
, “
Faster magnetic walls in rough wires
,”
Nature Mater.
2
,
521
523
(
2003
).
7.
E.
Martinez
, “
Micromagnetic analysis of current-driven dw dynamics along rough strips with high perpendicular anisotropy at room temperature
,”
J. Magn. Magn. Mater.
324
(
21
),
3542
3547
(
2012
).
8.
B. V.
de Wiele
,
L.
Laurson
, and
G.
Durin
, “
Effect of disorder on transverse domain wall dynamics in magnetic nanostrips
,”
Phys. Rev. B
86
,
144415
(
2012
).
9.
H.
Min
,
R. D.
McMichael
,
M. J.
Donahue
,
J.
Miltat
, and
M. D.
Stiles
, “
Effects of disorder and internal dynamics on vortex wall propagation
,”
Phys. Rev. Lett.
104
,
217201
(
2010
).
10.
J.
Leliaert
,
B.
Van de Wiele
,
A.
Vansteenkiste
,
L.
Laurson
,
G.
Durin
,
L.
Dupré
, and
B.
Van Waeyenberge
, “
A numerical approach to incorporate intrinsic material defects in micromagnetic simulations
,”
J. Appl. Phys.
115
(
17
),
17D102
(
2014
).
11.
T. Y.
Chen
,
M. J.
Erickson
,
P. A.
Crowell
, and
C.
Leighton
, “
Surface roughness dominated pinning mechanism of magnetic vortices in soft ferromagnetic films
,”
Phys. Rev. Lett.
109
,
097202
(
2012
).
12.
J. A. J.
Burgess
,
A. E.
Fraser
,
F.
Fani Sani
,
D.
Vick
,
B. D.
Hauer
,
J. P.
Davis
, and
M. R.
Freeman
, “
Quantitative magneto-mechanical detection and control of the barkhausen effect
,”
Science
339
(
6123
),
1051
1054
(
2013
).
13.
R. L.
Compton
,
T. Y.
Chen
, and
P. A.
Crowell
, “
Magnetic vortex dynamics in the presence of pinning
,”
Phys. Rev. B
81
,
144412
(
2010
).
14.
J.-S.
Kim
,
O.
Boulle
,
S.
Verstoep
,
L.
Heyne
,
J.
Rhensius
,
M.
Kläui
,
L. J.
Heyderman
,
F.
Kronast
,
R.
Mattheis
,
C.
Ulysse
, and
G.
Faini
, “
Current-induced vortex dynamics and pinning potentials probed by homodyne detection
,”
Phys. Rev. B
82
(
10
),
104427
(
2010
).
15.
A.
Vansteenkiste
and
B.
Van de Wiele
, “
Mumax: A new high-performance micromagnetic simulation tool
,”
J. Magn. Magn. Mater.
323
(
21
),
2585
2591
(
2011
).
16.
L. D.
Landau
and
E. M.
Lifshitz
, “
Theory of the dispersion of magnetic permeability in ferromagnetic bodies
,”
Phys. Z. Sowietunion
8
,
153
(
1935
).
17.
S.
Zhang
and
Z.
Li
, “
Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets
,”
Phys. Rev. Lett.
93
(
12
),
127204
(
2004
).
18.
L.
Lopez-Diaz
,
D.
Aurelio
,
L.
Torres
,
E.
Martinez
,
M. A.
Hernandez-Lopez
,
J.
Gomez
,
O.
Alejos
,
M.
Carpentieri
,
G.
Finocchio
, and
G.
Consolo
, “
Micromagnetic simulations using graphics processing units
,”
J. Phys. D: Appl. Phys.
45
(
32
),
323001
(
2012
).
19.
G. S. D.
Beach
,
M.
Tsoi
, and
J. L.
Erskine
, “
Current-induced domain wall motion
,”
J. Magn. Magn. Mater.
320
(
7
),
1272
1281
(
2008
).
20.
H.
Tanigawa
,
T.
Koyama
,
M.
Bartkowiak
,
S.
Kasai
,
K.
Kobayashi
,
T.
Ono
, and
Y.
Nakatani
, “
Dynamical pinning of a domain wall in a magnetic nanowire induced by walker breakdown
,”
Phys. Rev. Lett.
101
(
20
),
207203
(
2008
).
21.
J. W.
Lau
,
R. D.
McMichael
, and
M. J.
Donahue
, “
Implementation of two-dimensional polycrystalline grains in object oriented micromagnetic framework
,”
J. Res. Natl. Inst. Stand. Technol.
114
(
1
),
57
(
2009
).
22.
G.
Meier
,
M.
Bolte
,
R.
Eiselt
,
B.
Krüger
,
D.-H.
Kim
, and
P.
Fischer
, “
Direct imaging of stochastic domain-wall motion driven by nanosecond current pulses
,”
Phys. Rev. Lett.
98
(
18
),
187202
(
2007
).
23.
M.
Hayashi
,
L.
Thomas
,
Ya. B.
Bazaliy
,
C.
Rettner
,
R.
Moriya
,
X.
Jiang
, and
S. S. P.
Parkin
, “
Influence of current on field-driven domain wall motion in permalloy nanowires from time resolved measurements of anisotropic magnetoresistance
,”
Phys. Rev. Lett.
96
(
19
),
197207
(
2006
).
24.
G. S. D.
Beach
,
C.
Knutson
,
C.
Nistor
,
M.
Tsoi
, and
J. L.
Erskine
, “
Nonlinear domain-wall velocity enhancement by spin-polarized electric current
,”
Phys. Rev. Lett.
97
(
5
),
057203
(
2006
).
25.
L.
Heyne
,
J.
Rhensius
,
A.
Bisig
,
S.
Krzyk
,
P.
Punke
,
M.
Kläui
,
L. J.
Heyderman
,
L.
Le Guyader
, and
F.
Nolting
, “
Direct observation of high velocity current induced domain wall motion
,”
Appl. Phys. Lett.
96
(
3
),
032504
(
2010
).
26.
S.
Lepadatu
,
A.
Vanhaverbeke
,
D.
Atkinson
,
R.
Allenspach
, and
C. H.
Marrows
, “
Dependence of domain-wall depinning threshold current on pinning profile
,”
Phys. Rev. Lett.
102
(
12
),
127203
(
2009
).
27.
S.
Lepadatu
,
M. C.
Hickey
,
A.
Potenza
,
H.
Marchetto
,
T. R.
Charlton
,
S.
Langridge
,
S. S.
Dhesi
, and
C. H.
Marrows
, “
Experimental determination of spin-transfer torque nonadiabaticity parameter and spin polarization in permalloy
,”
Phys. Rev. B
79
(
9
),
094402
(
2009
).
28.
S.
Lepadatu
,
J. S.
Claydon
,
C. J.
Kinane
,
T. R.
Charlton
,
S.
Langridge
,
A.
Potenza
,
S. S.
Dhesi
,
P. S.
Keatley
,
R. J.
Hicken
,
B. J.
Hickey
, and
C. H.
Marrows
, “
Domain-wall pinning, nonadiabatic spin-transfer torque, and spin-current polarization in permalloy wires doped with vanadium
,”
Phys. Rev. B
81
(
2
),
020413
(
2010
).
29.
M.
Eltschka
,
M.
Wötzel
,
J.
Rhensius
,
S.
Krzyk
,
U.
Nowak
,
M.
Kläui
,
T.
Kasama
,
R. E.
Dunin-Borkowski
,
L. J.
Heyderman
,
H. J.
van Driel
, and
R. A.
Duine
, “
Nonadiabatic spin torque investigated using thermally activated magnetic domain wall dynamics
,”
Phys. Rev. Lett.
105
(
5
),
056601
(
2010
).
30.
L.
Thomas
,
M.
Hayashi
,
X.
Jiang
,
R.
Moriya
,
C.
Rettner
, and
S. S. P.
Parkin
, “
Oscillatory dependence of current-driven magnetic domain wall motion on current pulse length
,”
Nature
443
(
7108
),
197
200
(
2006
).
31.
L.
Heyne
,
J.
Rhensius
,
D.
Ilgaz
,
A.
Bisig
,
U.
Rüdiger
,
M.
Kläui
,
L.
Joly
,
F.
Nolting
,
L. J.
Heyderman
,
J. U.
Thiele
, and
F.
Kronast
, “
Direct determination of large spin-torque nonadiabaticity in vortex core dynamics
,”
Phys. Rev. Lett.
105
(
18
),
187203
(
2010
).
32.
S. D.
Pollard
,
L.
Huang
,
K. S.
Buchanan
,
D. A.
Arena
, and
Y.
Zhu
, “
Direct dynamic imaging of non-adiabatic spin torque effects
,”
Nat. Commun.
3
,
1028
(
2012
).
33.
J.-Y.
Chauleau
,
H. G.
Bauer
,
H. S.
Körner
,
J.
Stigloher
,
M.
Härtinger
,
G.
Woltersdorf
, and
C. H.
Back
, “
Self-consistent determination of the key spin-transfer torque parameters from spin-wave doppler experiments
,”
Phys. Rev. B
89
,
020403
(
2014
).
34.
Y.
Nakatani
,
A.
Thiaville
, and
J.
Miltat
, “
Head-to-head domain walls in soft nano-strips: A refined phase diagram
,”
J. Magn. Magn. Mater.
290–291
,
750
753
(
2005
).
35.
A.
Thiaville
,
Y.
Nakatani
,
J.
Miltat
, and
Y.
Suzuki
, “
Micromagnetic understanding of current-driven domain wall motion in patterned nanowires
,”
Europhys. Lett.
69
,
990
996
(
2005
).
36.
K.
Lenz
,
H.
Wende
,
W.
Kuch
,
K.
Baberschke
,
K.
Nagy
, and
A.
Jánossy
, “
Two-magnon scattering and viscous gilbert damping in ultrathin ferromagnets
,”
Phys. Rev. B
73
,
144424
(
2006
).
37.
J.
Rantschler
,
Y.
Ding
,
S.-C.
Byeon
, and
C.
Alexander
, Jr.
, “
Microstructure and damping in FeTiN and CoFe films
,”
J. Appl. Phys.
93
(
10
),
6671
6673
(
2003
).
38.
J.
Leliaert
,
B. V.
de Wiele
,
A.
Vansteenkiste
,
L.
Laurson
,
G.
Durin
,
L.
Dupré
, and
B. V.
Waeyenberge
, “
Influence of material defects on current-driven vortex domain wall mobility
,”
Phys. Rev. B
89
,
064419
(
2014
).
39.
E.
Martinez
, “
Static properties and current-driven dynamics of domain walls in perpendicular magnetocrystalline anisotropy nanostrips with rectangular cross-section
,”
Adv. Condens. Matter Phys.
2012
,
954196
.
40.
O.
Boulle
,
J.
Kimling
,
P.
Warnicke
,
M.
Kläui
,
U.
Rüdiger
,
G.
Malinowski
,
H. J. M.
Swagten
,
B.
Koopmans
,
C.
Ulysse
, and
G.
Faini
, “
Nonadiabatic spin transfer torque in high anisotropy magnetic nanowires with narrow domain walls
,”
Phys. Rev. Lett.
101
,
216601
(
2008
).
You do not currently have access to this content.