We demonstrate that the fractal dimension (FD) of the dislocation population in a deforming material is an important quantitative characteristic of the evolution of the dislocation structure. Thus, we show that peaking of FD signifies a nearing loss of uniformity of plastic flow and the onset of strain localization. Two techniques were employed to determine FD: (i) inspection of surface morphology of the deforming crystal by white light interferometry and (ii) monitoring of acoustic emission (AE) during uniaxial tensile deformation. A connection between the AE characteristics and the fractal dimension determined from surface topography measurements was established. As a common platform for the two methods, the dislocation density evolution in the bulk was used. The relations found made it possible to identify the occurrence of a peak in the median frequency of AE as a harbinger of plastic instability leading to necking. It is suggested that access to the fractal dimension provided by AE measurements and by surface topography analysis makes these techniques important tools for monitoring the evolution of the dislocation structure during plastic deformation—both as stand-alone methods and especially when used in tandem.

1.
M.
Zaiser
and
A.
Seeger
, in
Dislocations in Solids
, edited by
F. R. N.
Nabarro
and
M. S. Duesbery
(
Elsevier
,
2002
), Vol.
11
, p.
1
.
2.
M. C.
Miguel
,
A.
Vespignani
,
S.
Zapperi
,
J.
Weiss
, and
J. R.
Grasso
,
Nature
410
,
667
(
2001
).
3.
T.
Richeton
,
J.
Weiss
, and
F.
Louchet
,
Nature Mater.
4
,
465
(
2005
).
4.
D. M.
Dimiduk
,
C.
Woodward
,
R.
LeSar
, and
M. D.
Uchic
,
Science
312
,
1188
(
2006
).
5.
B.
Cai
and
Q. P.
Kong
,
Phys. Status Solidi A
173
,
365
(
1999
).
6.
J.
Weiss
and
M. Carmen
Miguel
,
Mater. Sci. Eng., A
387–389
,
292
(
2004
).
7.
M. C.
Miguel
,
A.
Vespignani
,
S.
Zapperi
,
J.
Weiss
, and
J.-R.
Grasso
,
Mater. Sci. Eng., A
309–310
,
324
(
2001
).
8.
A.
Vinogradov
and
A.
Lazarev
,
Scr. Mater.
66
,
745
(
2012
).
9.
I. V.
Shashkov
,
M. A.
Lebyodkin
, and
T. A.
Lebedkina
,
Acta Mater.
60
,
6842
(
2012
).
10.
D.
Merson
,
M.
Nadtochiy
,
V.
Patlan
,
A.
Vinogradov
, and
K.
Kitagawa
,
Mater. Sci. Eng., A
234
,
587
(
1997
).
11.
V. S.
Boiko
,
V. F.
Kivshik
, and
L. F.
Krivenko
,
Sov. Phys. JETP
55
,
291
(
1982
).
12.
M.
Zaiser
,
Adv. Phys.
55
,
185
(
2006
).
13.
G.
Ananthakrishna
,
Phys. Rep.
440
,
113
(
2007
).
14.
B. B.
Mandelbrot
,
The Fractal Geometry of Nature
(
W. H.
Freeman
,
New York
,
1983
).
15.
D.
Kuhlmann-Wilsdorf
,
R.
Maddin
, and
H. G. F.
Wilsdorf
, in
ASM Seminar on Strengthening Mechanisms in Solids
(
ASM
,
1962
), p.
737
.
16.
D.
Kuhlmann-Wilsdorf
,
Mater. Sci. Eng., A
113
,
1
(
1989
).
17.
O.
Meissner
,
J.
Schreiber
, and
A.
Schwab
,
Appl. Phys. A
66
,
S1113
(
1998
).
18.
M.
Zaiser
,
K.
Bay
, and
P.
Hähner
,
Acta Mater.
47
,
2463
(
1999
).
19.
M.
Zaiser
and
P.
Hähner
,
Mater. Sci. Eng., A
270
,
299
(
1999
).
20.
F.
Székely
,
I.
Groma
, and
J.
Lendvai
,
Mater. Sci. Eng., A
324
,
179
(
2002
).
21.
U. F.
Kocks
and
H.
Mecking
,
Prog. Mater. Sci.
48
,
171
(
2003
).
22.
Y.
Estrin
and
L. P.
Kubin
,
Res Mech.
23
,
197
(
1988
).
23.
J.
Kang
,
D. S.
Wilkinson
,
M.
Jain
,
J. D.
Embury
,
A. J.
Beaudoin
,
S.
Kim
,
R.
Mishira
, and
A. K.
Sachdev
,
Acta Mater.
54
,
209
(
2006
).
24.
T. A.
Lebedkina
and
M. A.
Lebyodkin
,
Acta Mater.
56
,
5567
(
2008
).
25.
L. P.
Kubin
,
C.
Fressengeas
, and
G.
Ananthakrishna
, in
Dislocations in Solids
, edited by
F. R. N.
Nabarro
and.
M. S.
Duesbery
(
Elsevier
,
2002
), Vol.
11
, p.
101
.
26.
T.
Richeton
,
P.
Dobron
,
F.
Chmelik
,
J.
Weiss
, and
F.
Louchet
,
Mater. Sci. Eng., A
424
,
190
(
2006
).
27.
M. A.
Lebyodkin
,
N. P.
Kobelev
,
Y.
Bougherira
,
D.
Entemeyer
,
C.
Fressengeas
,
T. A.
Lebedkina
, and
I. V.
Shashkov
,
Acta Mater.
60
,
844
(
2012
).
28.
K.
Mathis
,
F.
Chmelik
,
M.
Janecek
,
B.
Hadzima
,
Z.
Trojanova
, and
P.
Lukac
,
Acta Mater.
54
,
5361
(
2006
).
29.
C. B.
Scruby
,
H. N. G.
Wadley
, and
J. J.
Hill
,
J. Phys. D
16
,
1069
(
1983
).
30.
G. E.
Uhlenbeck
and
L. S.
Ornstein
,
Phys. Rev.
36
,
823
(
1930
).
31.
J. S.
Bendat
and
A. G.
Piersol
,
Random Data: Analysis and Measurement Procedures
(
Wiley
,
New York
,
2000
).
32.
Sh. M.
Kogan
,
Sov. Phys. Usp.
28
,
170
(
1985
).
33.
A. V.
Vinogradov
,
V.
Patlan
, and
S.
Hashimoto
,
Philos. Mag. A
81
,
1427
(
2001
).
34.
D. L.
Holt
,
J. Appl. Phys.
41
,
3197
(
1970
).
35.
H.
Hatano
,
J. Appl. Phys.
47
,
3873
(
1976
).
36.
D.
Rouby
and
P.
Fleischmann
,
Phys. Status Solidi A
48
,
439
(
1978
).
37.
A.
Vinogradov
, “
Acoustic Emission due to Plastic Deformation in Metals: Dislocation Based Modelling
” (unpublished).
38.
D. R.
James
and
S. H.
Carpenter
,
J. Appl. Phys.
42
,
4685
(
1971
).
39.
M.
Zaiser
,
F. M.
Grasset
,
V.
Koutsos
, and
E. C.
Aifantis
,
Phys. Rev. Lett.
93
,
195507
(
2004
).
40.
A.
Vinogradov
,
I. S.
Yasnikov
, and
Y.
Estrin
,
Phys. Rev. Lett.
108
,
205504
(
2012
).
41.
I.
Prigogine
,
Introduction to Thermodynamics of Irreversible Processes
(
Interscience Publishers
,
New York
,
1961
).
42.
M.
Huang
,
P. E. J.
Rivera-Díaz-del-Castillo
,
O.
Bouaziz
, and
S. van der
Zwaag
,
Mater. Sci. Technol.
24
,
495
(
2008
).
43.
H.
Mecking
and
U. F.
Kocks
,
Acta Metall.
29
,
1865
(
1981
).
44.
Y.
Estrin
and
H.
Mecking
,
Acta Metall.
32
,
57
(
1984
).
45.
P.
Hahner
,
K.
Bay
, and
M.
Zaiser
,
Phys. Rev. Lett.
81
,
2470
(
1998
).
46.
U.
Essmann
and
H.
Mughrabi
,
Philos. Mag. A
40
,
731
(
1979
).
47.
F. Dalla
Torre
,
R.
Lapovok
,
J.
Sandlin
,
P. F.
Thomson
,
C. H. J.
Davies
, and
E. V.
Pereloma
,
Acta Mater.
52
,
4819
(
2004
).
48.
Y.
Estrin
and
A.
Vinogradov
,
Acta Mater.
61
,
782
(
2013
).
49.
A. Y.
Vinogradov
,
V. V.
Stolyarov
,
S.
Hashimoto
, and
R. Z.
Valiev
,
Mater. Sci. Eng., A
318
,
163
(
2001
).
50.
V.
Patlan
,
A.
Vinogradov
,
K.
Higashi
, and
K.
Kitagawa
,
Mater. Sci. Eng., A
300
,
171
(
2001
).
51.
I. S.
Yasnikov
,
A.
Vinogradov
, and
Y.
Estrin
,
Phys. Solid State
55
,
306
(
2013
).
52.
M.
Koslowski
,
R.
LeSar
, and
R.
Thomson
,
Phys. Rev. Lett.
93
,
125502
(
2004
).
53.
I. S.
Yasnikov
,
A.
Vinogradov
, and
Y.
Estrin
,
Scr. Mater.
76
,
37
(
2014
).
54.
A.
Vinogradov
,
M.
Nadtochiy
,
S.
Hashimoto
, and
S.
Miura
,
Mater. Trans. JIM
36
,
496
(
1995
).
55.
A. Y.
Vinogradov
and
V. A.
Khonik
,
Philos. Mag. A
84
,
2147
(
2004
).
56.
D.
Klaumünzer
,
A.
Lazarev
,
R.
Maaß
,
F. H. Dalla
Torre
,
A.
Vinogradov
, and
J. F.
Löffler
,
Phys. Rev. Lett.
107
,
185502
(
2011
).
57.
M.
Zaiser
,
Mater. Sci. Eng., A
309–310
,
304
(
2001
).
58.
P.
Hähner
,
Acta Mater.
44
,
2345
(
1996
).
59.
J.
Feder
,
Fractals
(
Plenum
,
1988
).
60.
M. P.
Nightingale
and
H. W. J.
Blöte
,
Phys. Rev. Lett.
76
,
4548
(
1996
).
61.
I. K.
Kamilov
,
A. K.
Murtazaev
, and
Kh. K.
Aliev
,
Phys. Usp.
42
,
689
(
1999
).
62.
B.
Dubuc
,
J. F.
Quiniou
,
C.
Roques-Carmes
,
C.
Tricot
, and
S. W.
Zucker
,
Phys. Rev. A
39
,
1500
(
1989
).
63.
J. C.
Russ
,
Fractal Surfaces
(
Plenum Press
,
New York
,
1994
).
64.
A.
Vinogradov
,
M.
Nadtochiy
,
S.
Hashimoto
, and
S.
Miura
,
Mater. Trans. JIM
36
,
426
(
1995
).
You do not currently have access to this content.