Perovskite-type SrTiO3−δ ceramics are multifunctional materials with significant potential as n-type thermoelectric (TE) materials. The electronic and thermal transport properties of spark plasma sintered polycrystalline Sr1−xYxTiO3−δ (x = 0.05, 0.075, 0.1) ceramics are systematically investigated from (15–800) K. The Sr0.9Y0.1TiO3−δ simultaneously exhibits a large Seebeck coefficient, α > −80 μV/K and moderately high electrical resistivity, ρ ∼ 0.8 mΩ-cm at a carrier concentration of ∼1021 cm−3 at 300 K resulting in a high TE power factor defined herein as (α2σT) ∼ 0.84 W/m-K at 760 K. Despite the similar atomic masses of Sr (87.6 g/mol) and Y (88.9 g/mol), the lattice thermal conductivity (κL) of Sr1−xYxTiO3−δ is significantly reduced with increased Y-doping, owing to the smaller ionic radii of Y3+ (∼1.23 Å, coordination number 12) compared to Sr2+ (∼1.44 Å, coordination number 12) ions. In order to understand the thermal conductivity reduction mechanism, the κL in the Sr1−xYxTiO3−δ series are phenomenologically modeled with a modified Callaway's equation from 30–600 K. Phonon scattering by elastic strain field due to ionic radii mismatch is found to be the prominent scattering mechanism in reducing κL of these materials. In addition, the effect of Y-doping on the elastic moduli of Sr1−xYxTiO3−δ (x = 0, 0.1) is investigated using resonant ultrasound spectroscopy, which exhibits an anomaly in x = 0.1 in the temperature range 300–600 K. As a result, the phonon mean free path is found to be further reduced in the Sr0.9Y0.1TiO3−δ compared to that of SrTiO3−δ, resulting in a considerably low thermal conductivity κ ∼ 2.7 W/m-K at 760 K. Finally, we report a thermoelectric figure of merit (ZT) ∼ 0.3 at 760 K in the Sr0.9Y0.1TiO3−δ, the highest ZT value reported in the Y-doped SrTiO3 ceramics thus far.

1.
P. A.
Fleury
,
J. F.
Scott
, and
J. M.
Worlock
,
Phys. Rev. Lett.
21
,
16
(
1968
).
2.
J. H.
Haeni
,
J. P.
Irvin
,
W.
Chang
,
R.
Uecker
,
P.
Reiche
,
Y. L.
Li
,
S.
Choudhury
,
W.
Tian
,
M. E.
Hawley
,
B.
Craig
,
A. K.
Tagantsev
,
X. Q.
Pan
,
S. K.
Streiffer
,
L. Q.
Chen
,
S. W.
Kirchoefer
,
J.
Levy
, and
D. G.
Schlom
,
Nature
430
,
758
(
2004
).
3.
4.
H. W.
Jang
,
A.
Kumar
,
S.
Denev
,
M. D.
Biegalski
,
P.
Maksymovych
,
C. W.
Bark
,
C. T.
Nelson
,
C. M.
Folkman
,
S. H.
Baek
,
N.
Balke
,
C. M.
Brooks
,
D. A.
Tenne
,
D. G.
Schlom
,
L. Q.
Chen
,
X. Q.
Pan
,
S. V.
Kalinin
,
V.
Gopalan
, and
C. B.
Eom
,
Phys. Rev. Lett.
104
,
197601
(
2010
).
5.
J. F.
Schooley
,
W. R.
Hosler
, and
M. L.
Cohen
,
Phys. Rev. Lett.
12
,
474
(
1964
).
6.
P.
Moetakef
,
J. R.
Williams
,
D. G.
Ouellette
,
A. P.
Kajdos
,
D.
Goldhaber-Gordon
,
S. J.
Allen
, and
S.
Stemmer
,
Phys. Rev. X
2
,
021014
(
2012
).
7.
D. E.
Grupp
and
A. M.
Goldman
,
Science
276
,
392
(
1997
).
8.
R.
Konta
,
T.
Ishii
,
H.
Kato
 et al.,
J. Phys. Chem. B
108
,
8992
(
2004
).
9.
T. K.
Townsend
,
N. D.
Browning
, and
F. E.
Osterloh
,
ACS Nano
6
,
7420
7426
(
2012
).
10.
K.
Koumoto
,
Y.
Wang
,
R.
Zhang
,
A.
Kosuga
, and
R.
Funahashi
,
Annu. Rev. Mater. Res.
40
,
363
394
(
2010
).
11.
L. F.
Mattheiss
,
Phys Rev. B
6
,
4718
(
1972
).
12.
A.
Migliori
,
J. L.
Sarrao
,
W. M.
Visscher
,
T. M.
Bell
,
M.
Lei
,
Z.
Fisk
, and
R. G.
Leisure
,
Physica B
183
,
1
24
(
1993
).
13.
K.
Uchida
and
S.
Tsuneyuki
,
Phys. Rev. B
68
,
174107
(
2003
).
14.
I.
Terasaki
,
Y.
Sasago
, and
K.
Uchinokura
,
Phys. Rev. B
56
,
R12685
(
1997
).
15.
16.
M.
Capizzi
and
A.
Frova
,
Phys. Rev. Lett.
25
,
1298
(
1970
).
17.
K.
van Benthem
,
C.
Elsasser
, and
R. H.
French
,
J. Appl. Phys.
90
,
6156
(
2001
).
18.
W.
Luo
,
W.
Duan
,
S. G.
Louie
, and
M. L.
Cohen
,
Phys Rev. B
70
,
214109
(
2004
).
19.
P. G.
Klemens
,
Physica B
263–264
,
102
104
(
1999
).
20.
A.
Mehdizadeh Dehkordi
,
S.
Bhattacharya
,
T.
Darroudi
,
J. W.
Graff
,
U.
Schwingenschlögl
,
H. N.
Alshareef
, and
T. M.
Tritt
,
Chem. Mater.
26
,
2478
(
2014
).
21.
J.
Robertson
and
S. J.
Clark
,
Phys. Rev. B
83
,
075205
(
2011
).
22.
H.
Muta
,
K.
Kurosaki
, and
S.
Yamanaka
,
J. Alloy Compd.
392
,
306
(
2005
).
23.
X.
Li
,
H.
Zhao
,
W.
Shen
,
F.
Gao
,
X.
Huang
,
Y.
Li
, and
Z.
Zhu
,
J. Power Sources
166
,
47
(
2007
).
24.
Y.
Li
,
Y. N.
Kim
,
J.
Cheng
,
J. A.
Alonso
,
Z.
Hu
,
Y.
Chin
,
T.
Takami
,
M. T.
Fernandez-Diaz
,
H.
Lin
,
C.
Chen
,
L. H.
Tjeng
,
A.
Manthiram
, and
J. B.
Goodenough
,
Chem. Mater.
23
,
5037
(
2011
).
25.
M.
Ito
and
N.
Ohira
,
Mater. Trans.
49
,
1844
(
2008
).
26.
S.
Hui
and
A.
Petric
,
J. Electrochem. Soc.
149
,
J1
J10
(
2002
).
27.
H.
Obara
,
A.
Yamamoto
,
C.
Lee
,
K.
Kobayashi
,
A.
Matsumoto
, and
R.
Funahashi
,
Jpn. J. Appl. Phys., Part 2
43
,
L540
(
2004
).
28.
R. D.
Shannon
,
Acta Cryst. A
32
,
751
(
1976
).
29.
S.
Bhattacharya
,
A.
Mehdizadeh Dehkordi
,
H. N.
Alshareef
, and
T. M.
Tritt
, “Synthesis-property relationship in thermoelectric Sr1-xYbxTiO3 ceramics” (to be published).
30.
A. L.
Pope
,
R. T.
Littleton
, and
T. M.
Tritt
,
Rev. Sci. Instrum.
72
,
3129
(
2001
).
31.
A. L.
Pope
,
B.
Zawilski
, and
T. M.
Tritt
,
Cryogenics
41
,
725
(
2001
).
32.
A.
Migliori
and
J. L.
Sarrao
,
Resonant Ultrasound Spectroscopy
(
Wiley
,
New York
,
1997
).
33.
G.
Li
and
J. R.
Gladden
,
High Temperature Resonant Ultrasound Spectroscopy: A Review
, Int. J. of Spectroscopy (
2010
), p.
206362
.
34.
S.
Ohta
,
T.
Nomura
,
H.
Ohta
, and
K.
Koumoto
,
J. Appl. Phys.
97
,
034106
(
2005
).
35.
H.
Ohta
,
K.
Sugiura
, and
K.
Koumoto
,
Inorg. Chem.
47
,
8429
8436
(
2008
).
36.
Y. I.
Ravich
,
B. A.
Efimova
, and
I. A.
Smirnov
,
Semiconducting Lead Chalcogenides
, edited by
L. S.
Stil'bans
(
Plenum Press
,
1970
), p
155
.
37.
M.
Ahrens
,
R.
Merkle
,
B.
Rahmati
, and
J.
Maier
,
Physica B
393
,
239
248
(
2007
).
38.
A.
Mehdizadeh Dehkordi
,
S.
Bhattacharya
,
C.
Kucera
,
J.
Ballato
,
R.
Adebisi
,
J. P.
Gladden
,
H. N.
Alshareef
, and
T. M.
Tritt
, “Manipulating thermal conduction in bulk polycrystalline SrTiO3-delta via non-stoichiometry tuning” (to be published).
39.
H.
Muta
,
K.
Kurosaki
, and
S.
Yamanaka
,
J. Alloy Compd.
350
,
292
295
(
2003
).
40.
S.
Ohta
,
H.
Ohta
, and
K.
Koumoto
,
J. Ceram. Soc. Jpn.
114
,
102
105
(
2006
).
41.
D. G.
Cahill
,
S. K.
Watson
, and
R. O.
Pohl
,
Phys. Rev. B
46
,
6131
(
1992
).
42.
V.
Murashov
and
M. A.
White
, in
Thermal Conductivity, Theory, Properties and Applications
, edited by
T. M.
Tritt
(
Kluwer Academic
,
2003
).
43.
Y.
Wang
,
K.
Pufinami
,
R.
Zhang
,
C.
Wan
,
N.
Wang
,
Y.
Ba
, and
K.
Koumoto
,
Appl. Phys. Express
3
,
031101
(
2010
).
44.
T. M.
Tritt
,
Annu. Rev. Mater. Res.
41
,
433
448
(
2011
).
45.
46.
47.
A.
Matthiessen
,
Rep. Brit. Assoc.
32
,
144
150
(
1862
).
48.
J.
Callaway
and
H. C.
von Baeyer
,
Phys. Rev.
120
,
1149
(
1960
).
49.
H. B. G.
Casimir
,
Physica V
6
,
495
500
(
1938
).
50.
P. G.
Klemens
,
Proc. Phys. Soc. London A
68
,
1113
1128
(
1955
).
51.
P. G.
Klemens
,
Phys. Rev.
119
,
507
509
(
1960
).
52.
B.
Abeles
,
Phys. Rev.
131
,
1906
1911
(
1963
).
53.
G. S.
Nolas
,
J. L.
Cohn
, and
G. A.
Slack
,
Phys. Rev. B
58
,
164
(
1998
).
54.
C. B.
Vining
,
J. Appl. Phys.
69
,
331
(
1991
).
55.
Size and surface effects
,” in
Electrons and Phonons
, by
J. M.
Ziman
(
Oxford at the Clarendon Press
,
1960
), p.
465
.
56.
D. T.
Morelli
,
J. P.
Heremans
, and
G. A.
Slack
,
Phys. Rev. B
66
,
195304
(
2002
).
57.
J.
Yang
, “
Theory of thermal conductivity
,” in
Thermal Conductivity, Theory, Properties and Applications
, edited by
T. M.
Tritt
(
Kluwer Academic
,
2003
).
58.
G. A.
Slack
and
S.
Galginaitis
,
Phys. Rev.
133
,
A253
A268
(
1964
).
59.
G.
Leibfried
and
E.
Schlömann
,
Nachr. Akad. Wiss. Gottingen II
a(4)
,
71
(
1954
).
60.
Y.
Wang
,
X.
Xu
, and
J.
Yang
,
Phys. Rev. Lett.
102
,
175508
(
2009
).
61.
C. J.
Glassbrenner
and
G. A.
Slack
,
Phys. Rev. A
134
,
1058
(
1964
).
62.
B.
Lüthi
and
T. J.
Moran
,
Phys. Rev. B
2
,
1211
(
1970
).
63.
D. G.
Cahill
and
R. O.
Pohl
,
Ann. Rev. Phys. Chem.
39
,
93
121
(
1988
).
64.
M. G.
Holland
,
Phys. Rev.
132
,
2461
(
1963
).
65.
R.
Berman
,
F. E.
Simon
, and
J. M.
Ziman
,
Proc. R. Soc. London A
220
,
171
(
1953
).
66.
A. G.
Beattie
and
G. A.
Samara
,
J. Appl. Phys.
42
,
2376
(
1971
).
67.
P.
Carruthers
,
Phys. Rev. B
114
,
995
(
1959
).
68.
Y. P.
Varshni
,
Phys. Rev. B
2
(
10
),
3952
(
1970
).
69.
C.
Kittel
,
Introduction to Solid state Physics
, 7th ed. (
Wiley & Sons, Inc
,
1996
), p.
88
.
70.
O. L.
Anderson
,
J. Phys. Chem. Solids
24
,
909
(
1963
).
71.
S. K.
Kor
and
N. D.
Tripathi
,
J. Phys. Sos. Jpn.
38
,
1073
(
1975
).
You do not currently have access to this content.