We present an analytical method for evaluating the first and second moments of the effective exciton spatial distribution in organic light-emitting diodes (OLED) from measured emission patterns. Specifically, the suggested algorithm estimates the emission zone mean position and width, respectively, from two distinct features of the pattern produced by interference between the emission sources and their images (induced by the reflective cathode): the angles in which interference extrema are observed, and the prominence of interference fringes. The relations between these parameters are derived rigorously for a general OLED structure, indicating that extrema angles are related to the mean position of the radiating excitons via Bragg's condition, and the spatial broadening is related to the attenuation of the image-source interference prominence due to an averaging effect. The method is applied successfully both on simulated emission patterns and on experimental data, exhibiting a very good agreement with the results obtained by numerical techniques. We investigate the method performance in detail, showing that it is capable of producing accurate estimations for a wide range of source-cathode separation distances, provided that the measured spectral interval is large enough; guidelines for achieving reliable evaluations are deduced from these results as well. As opposed to numerical fitting tools employed to perform similar tasks to date, our approximate method explicitly utilizes physical intuition and requires far less computational effort (no fitting is involved). Hence, applications that do not require highly resolved estimations, e.g., preliminary design and production-line verification, can benefit substantially from the analytical algorithm, when applicable. This introduces a novel set of efficient tools for OLED engineering, highly important in the view of the crucial role the exciton distribution plays in determining the device performance.

1.
M. A.
Baldo
,
M. E.
Thompson
, and
S. R.
Forrest
,
Nature
403
,
750
(
2000
).
2.
D.
Reineke
,
F.
Lindner
,
G.
Schwartz
,
N.
Seidler
,
K.
Walzer
,
B.
Lüssem
, and
K.
Leo
,
Nature
459
,
234
(
2009
).
3.
M.
Thomschke
,
S.
Hofmann
,
S.
Olthof
,
M.
Anderson
,
H.
Kleemann
,
M.
Schober
,
B.
Lussem
, and
K.
Leo
,
Appl. Phys. Lett.
98
,
083304
(
2011
).
4.
R.
Meerheim
,
M.
Furno
,
S.
Hofmann
,
B.
Lussem
, and
K.
Leo
,
Appl. Phys. Lett.
97
,
253305
(
2010
).
5.
W.
Brütting
,
J.
Frischeisen
,
T. D.
Schmidt
,
B. J.
Scholz
, and
C.
Mayr
,
Phys. Status Solidi A
210
,
44
(
2013
).
6.
K. A.
Neyts
,
J. Opt. Soc. Am. A
15
,
962
(
1998
).
7.
N.
Tessler
,
Appl. Phys. Lett.
77
,
1897
(
2000
).
8.
C.-L.
Lin
,
T.-Y.
Cho
,
C.-H.
Chang
, and
C.-C.
Wu
,
Appl. Phys. Lett.
88
,
081114
(
2006
).
9.
A.
Epstein
,
N.
Tessler
, and
P. D.
Einziger
,
IEEE J. Quantum Electron.
46
,
1388
(
2010
).
10.
J.
Frischeisen
,
D.
Yokoyama
,
A.
Endo
,
C.
Adachi
, and
W.
Brütting
,
Org. Electron.
12
,
809
(
2011
).
11.
M.
Furno
,
R.
Meerheim
,
S.
Hofmann
,
B.
Lüssem
, and
K.
Leo
,
Phys. Rev. B
85
,
115205
(
2012
).
12.
T. D.
Schmidt
,
D. S.
Setz
,
M.
Flämmich
,
J.
Frischeisen
,
D.
Michaelis
,
C.
Mayr
,
A. F.
Rausch
,
T.
Wehlus
,
B. J.
Scholz
,
T. C. G.
Reusch
,
N.
Danz
, and
W.
Brütting
,
Appl. Phys. Lett.
103
,
093303
(
2013
).
13.
N.
Tessler
,
X.-C.
Li
,
R.
Friend
,
S.
Morrati
, and
A.
Holmes
,
Synth. Met.
102
,
1124
(
1999
).
14.
M.
Mesta
,
M.
Carvelli
,
R. J.
de Vries
,
H.
van Eersel
,
J. J. M.
van der Holst
,
M.
Schober
,
M.
Furno
,
B.
Lüssem
,
K.
Leo
,
P.
Loebl
,
R.
Coehoorn
, and
P. A.
Bobbert
,
Nature Mater.
12
,
652
(
2013
).
15.
T.
Granlund
,
L.
Pettersson
, and
O.
Inganas
,
J. Appl. Phys.
89
,
5897
(
2001
).
16.
M. C.
Gather
,
M.
Flämmich
,
N.
Danz
,
D.
Michaelis
, and
K.
Meerholz
,
Appl. Phys. Lett.
94
,
263301
(
2009
).
17.
B.
Perucco
,
N. A.
Reinke
,
D.
Rezzonico
,
M.
Moos
, and
B.
Ruhstaller
,
Opt. Express
18
,
A246
(
2010
).
18.
M.
Flämmich
,
M. C.
Gather
,
N.
Danz
,
D.
Michaelis
,
A. H.
Bräuer
,
K.
Meerholz
, and
A.
Tünnermann
,
Org. Electron.
11
,
1039
(
2010
).
19.
S. L. M.
van Mensfoort
,
M.
Carvelli
,
M.
Megens
,
D.
Wehenkel
,
M.
Bartyzel
,
H.
Greiner
,
R. A. J.
Janssen
, and
R.
Coehoorn
,
Nat. Photonics
4
,
329
(
2010
).
20.
M.
Flämmich
,
D.
Michaelis
, and
N.
Danz
,
Org. Electron.
12
,
83
(
2011
).
21.
L.
Penninck
,
F.
Steinbacher
,
R.
Krause
, and
K.
Neyts
,
Org. Electron.
13
,
3079
(
2012
).
22.
N.
Danz
,
M.
Flämmich
,
D. S.
Setz
,
B. C.
Krummacher
,
D.
Michaelis
, and
T.
Dobbertin
,
Opt. Lett.
37
,
4134
(
2012
).
23.
M.
Carvelli
,
R. A. J.
Janssen
, and
R.
Coehoorn
,
J. Appl. Phys.
110
,
084512
(
2011
).
24.
A.
Epstein
,
N.
Tessler
, and
P. D.
Einziger
,
Opt. Lett.
35
,
3366
(
2010
).
25.
See http://webee.technion.ac.il/labs/orgelect/WhereIsMyEmissionZone.html for a simple applet based on our method based on raw measured emission patterns.
26.
We have recently proven that the transverse electric (TE) polarized emission patterns predicted by the simplified formulation match exactly those of the realistic devices, thus ensuring the validity of our previous results.30,31 Nonetheless, the transverse magnetic (TM) polarized emission contains further information regarding the orientation distribution of the emitting dipoles; in order to utilize it, the 3D model should be used.
27.
TE-polarized emission is defined as the contribution to the total emission arising from electromagnetic fields in which the electric field is parallel to the OLED layer interfaces. Similarly, TM-polarized emission is produced by electromagnetic fields in which the magnetic field is parallel to the OLED layer interfaces. The two contributions are orthogonal.
28.
P.
Liehm
,
C.
Murawski
,
M.
Furno
,
B.
Lüssem
,
K.
Leo
, and
M. C.
Gather
,
Appl. Phys. Lett.
101
,
253304
(
2012
).
29.
A.
Epstein
,
N.
Tessler
, and
P. D.
Einziger
,
Opt. Express
20
,
7929
(
2012
).
30.
A.
Epstein
and
P. D.
Einziger
, in
Proceedings of the 7th European Conference on Antennas and Propagation (EuCAP2013)
(IEEE,
2013
), pp.
1026
1030
.
31.
A.
Epstein
,
N.
Tessler
, and
P. D.
Einziger
, in
Proceedings of the URSI Commission B 2013 International Symposium on Electromagnetic Theory (EMTS2013)
(
2013
), pp.
1031
1034
.
32.
L. B.
Felsen
and
N.
Marcuvitz
,
Radiation and Scattering of Waves
, 1st ed. (
Prentice-Hall
,
Englewood Cliffs, NJ
,
1973
).
33.
W.
Lukosz
,
J. Opt. Soc. Am.
69
,
1495
(
1979
).
34.
H.
Benisty
,
R.
Stanley
, and
M.
Mayer
,
J. Opt. Soc. Am. A
15
,
1192
(
1998
).
35.
D.
Sokolik
, “
Power absorption in highly lossy biological tissues: electric dipole excitation
,” Master's thesis (
Technion-Israel Institute of Technology
,
2003
).
36.

The difference in definitions is due to the fact that for n > 0, the nth interface dn separates the nth and (n + 1)th layers, while for n < 0 the nth interface separates the nth and (n − 1)th layers (Fig. 1).

37.
A.
Epstein
,
N.
Tessler
, and
P. D.
Einziger
,
Phys. Rev. A
87
,
043844
(
2013
).
38.
K.
Saxena
,
D. S.
Mehta
,
R.
Srivastava
, and
M. N.
Kamalasanan
,
Appl. Phys. Lett.
89
,
061124
(
2006
).
39.
D.
Razansky
,
D. F.
Soldea
, and
P. D.
Einziger
,
J. Appl. Phys.
95
,
8298
(
2004
).
40.
H.
Kim
,
C. M.
Gilmore
,
A.
Pique
,
J. S.
Horwitz
,
H.
Mattoussi
,
H.
Murata
,
Z. H.
Kafafi
, and
D. B.
Chrisey
,
J. Appl. Phys.
86
,
6451
(
1999
).
41.
P. A.
Hobson
,
J. A. E.
Wasey
,
I.
Sage
, and
W. L.
Barnes
,
IEEE J. Sel. Top. Quantum Electron.
8
,
378
(
2002
).
42.
M.
Flämmich
,
M. C.
Gather
,
N.
Danz
,
D.
Michaelis
, and
K.
Meerholz
,
Appl. Phys. Lett.
95
,
263306
(
2009
).
43.
M.
Weber
,
Handbook of Optical Materials
(
CRC Press
,
Boca Raton
,
2003
).
44.
M.
Roberts
,
K.
Asada
,
M.
Cass
,
C.
Coward
,
S.
King
,
A.
Lee
,
M.
Pintani
,
M.
Ramon
, and
C.
Foden
,
Proc. SPIE
7722
,
77220C
(
2010
).
45.
See http://webee.technion.ac.il/orgelect/whereIsMyEmissionZonePP.html for a bundle of MATLAB scripts implementing the evaluation procedure presented herein including preprocessing of the emission patterns to isolate the image-source interference pattern.
46.
A. A.
Shcherbakov
,
A. V.
Tishchenko
,
D. S.
Setz
, and
B. C.
Krummacher
,
Org. Electron.
12
,
654
(
2011
).
47.
A.
Epstein
,
N.
Tessler
, and
P.
Einziger
, in
Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation (APS/URSI)
(
2012
), pp.
1
2
.
48.
C.-H.
Tsai
,
K.-C.
Tien
,
M.-C.
Chen
,
K.-M.
Chang
,
M.-S.
Lin
,
H.-C.
Cheng
,
Y.-H.
Lin
,
H.-W.
Chang
,
H.-W.
Lin
,
C.-L.
Lin
, and
C.-C.
Wu
,
Org. Electron.
11
,
439
(
2010
).
49.
S.
Mladenovski
,
K.
Neyts
,
D.
Pavicic
,
A.
Werner
, and
C.
Rothe
,
Opt. Express
17
,
7562
(
2009
).
50.
Z. B.
Wang
,
M. G.
Helander
,
J.
Qiu
,
D. P.
Puzzo
,
M. T.
Greiner
,
Z. M.
Hudson
,
S.
Wang
,
Z. W.
Liu
, and
Z. H.
Lu
,
Nat. Photonics
5
,
753
(
2011
).
51.

The difference between the procedures is that now the orientation factor of the VEDs Mξ (Eq. (8)) should be considered in the evaluation of IS contribution to the emission pattern (Eq. (12)), and the phase induced by the reflection from the cathode (αimg − α0), which appears in Eq. (23) should be suitable for a TM reflection coefficient.24 Moreover, in Eqs. (24)–(27), the side-lobe emission should be compared to the emission to an angle θ ≠ 0, as VEDs do not emit in the forward direction.

You do not currently have access to this content.