An in-depth study of reset processes in RRAMs (Resistive Random Access Memories) based on Ni/HfO2/Si-n+ structures has been performed. To do so, we have developed a physically based simulator where both ohmic and tunneling based conduction regimes are considered along with the thermal description of the devices. The devices under study have been successfully fabricated and measured. The experimental data are correctly reproduced with the simulator for devices with a single conductive filament as well as for devices including several conductive filaments. The contribution of each conduction regime has been explained as well as the operation regimes where these ohmic and tunneling conduction processes dominate.

1.
See http://public.itrs.net for the international technology roadmap for semiconductors, ed. 2011 and 2012 update.
2.
S.
Long
,
C.
Cagli
,
D.
Ielmini
,
M.
Liu
, and
J.
Suñé
, “
Analysis and modeling of resistive switching statistics
,”
J. Appl. Phys.
111
,
074508
(
2012
).
3.
H. S. P.
Wong
,
H. Y.
Lee
,
S.
Yu
,
Y.-S.
Chen
,
Y.
Wu
,
P.-S.
Chen
,
B.
Lee
,
F. T.
Chen
, and
M.-J.
Tsai
. “
Metal-oxide RRAM
,”
Proc. IEEE
100
(
6
),
1951
1970
(
2012
).
4.
I. G.
Baek
,
D. C.
Kim
,
M. J.
Lee
,
H.-J.
Kim
,
E. K.
Yim
,
M. S.
Lee
,
J. E.
Lee
,
S. E.
Ahn
,
S.
Seo
,
J. H.
Lee
,
J. C.
Park
,
Y. K.
Cha
,
S. O.
Park
,
H. S.
Kim
,
I. K.
Yoo
,
U-In
Chung
,
J. T.
Moon
, and
B. I.
Ryu
, “
Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application
,”
IEDM Tech. Dig.
2005
,
750
753
.
5.
U.
Russo
,
C.
Cagli
, and
A.-L.
Lacaita
, “
Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices
,”
IEEE Trans. Electron Dev.
56
(
2
),
193
200
(
2009
).
6.
U.
Russo
,
C.
Cagli
, and
A.-L.
Lacaita
, “
Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices
,”
IEEE Trans. Electron Dev.
56
(
2
),
186
192
(
2009
).
7.
S.
Long
,
X.
Lian
,
T.
Ye
,
C.
Cagli
,
L.
Perniola
,
E.
Miranda
,
M.
Liu
, and
J.
Suñé
, “
Cycle-to-cycle intrinsic RESET statistics in HfO2-based unipolar RRAM devices
,”
IEEE Electron Dev. Lett.
34
(
5
),
623
625
(
2013
).
8.
S.
Long
,
C.
Cagli
,
J.
Bucley
,
X.
Lian
,
M.
Liu
, and
J.
Suñé
, “
Voltage and power-controlled regimes in the progressive unipolar RESET transition of HfO2-based RRAM
,”
Sci. Rep.
3
,
2929
(
2013
).
9.
M. A.
Villena
,
F.
Jimenez-Molinos
,
J. B.
Roldán
,
J.
Suñé
,
S.
Long
,
X.
Lian
,
F.
Gámiz
, and
M.
Liu
, “
An in-depth simulation study of thermal reset transitions in RRAM
,”
J. Appl. Phys.
114
,
144505
(
2013
).
10.
M. A.
Villena
,
F.
Jiménez-Molinos
,
J. B.
Roldán
,
J.
Suñé
,
S.
Long
,
E.
Miranda
, and
M.
Liu
, “
A comprehensive analysis on progressive reset transitions in RRAMs
,”
J. Phys. D: Appl. Phys.
47
,
205102
(
2014
).
11.
D.
Ielmini
,
F.
Nardi
, and
C.
Cagli
, “
Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories
,”
Nanotechnology
22
,
254022
(
2011
).
12.
M.
Bocquet
,
D.
Deleruyelle
,
C.
Muller
, and
J.-M.
Portal
. “
Self-consistent physical modeling of set/reset operations in unipolar resistive-switching memories
,”
Appl. Phys. Lett.
98
,
263507
(
2011
).
13.
J.
Wu
,
J.
Cao
,
W.
Han
,
A.
Janotti
, and
H. C.
Kim
,
Functional Metal Oxide Nanostructures
(
Springer-Verlag
,
2012
).
14.
X.
Wu
,
D.
Cha
,
M.
Bosman
,
N.
Raghavan
,
D. B.
Migas
,
V. E.
Borisenko
,
X.
Zhang
,
K.
Li
, and
K.
Pey
, “
Intrinsic nanofilamentation in resistive switching
,”
J. Appl. Phys.
113
,
114503
(
2013
).
15.
L. M.
Yang
,
Y. L.
Song
,
Y.
Liu
,
Y. L.
Wang
,
X. P.
Tian
,
M.
Wang
,
Y. Y.
Lin
,
R.
Huang
,
Q. T.
Zou
, and
J. G.
Wu
, “
Linear scaling of reset current down to 22-nm node for a novel CuxSiyO RRAM
,”
IEEE Electron Dev. Lett.
33
,
89
(
2012
).
16.
X.
Yang
,
S.
Long
,
K.
Zhang
,
X.
Liu
,
X.
Lian
,
Q.
Liu
,
H.
Lv
,
M.
Wang
,
H.
Xie
,
H.
Sun
,
P.
Sun
,
J.
Suñé
, and
M.
Liu
, “
Investigation on the RESET switching mechanism of bipolar Cu/HfO2/Pt RRAM devices with a statistical methodology
,”
J. Phys. D: Appl. Phys.
46
,
245107
(
2013
).
17.
S. B.
Lee
,
S. C.
Chae
,
S. H.
Chang
,
L. S.
Lee
,
S.
Seo
,
B.
Kahng
, and
T. W.
Noh
, “
Scaling behaviors of reset voltages and currents in unipolar resistance switching
,”
Appl. Phys. Lett.
93
,
212105
(
2008
).
18.
S. C.
Chae
,
J. S.
Lee
,
S.
Kim
,
S. B.
Lee
,
S. H.
Chang
,
C.
Liu
,
B.
Kahng
,
H.
Shin
,
D.-W.
Kim
,
C. U.
Jung
,
S.
Seo
,
M.-J.
Lee
, and
T. W.
Noh
. “
Random circuit breaker network model for unipolar resistance switching
,”
Adv. Mater.
20
,
1154
(
2008
.)
19.
J. S.
Lee
,
S. B.
Lee
,
S. H.
Chang
,
L. G.
Gao
,
B. S.
Kang
,
M. J.
Lee
,
C. J.
Kim
,
T. W.
Noh
, and
B.
Kahng
. “
Scaling theory for unipolar resistance switching
,”
Phys. Rev. Lett.
105
,
205701
(
2010
).
20.
E.
Miranda
,
C.
Walczyk
,
C.
Wenger
, and
T.
Schroeder
, “
Model for the resistive switching effect in HfO2 MIM structures based on the transmission properties of narrow constrictions
,”
IEEE Electron Device Lett.
31
,
609
(
2010
).
21.
L. M.
Procel
,
L.
Trojman
,
J.
Moreno
,
F.
Crupi
,
V.
Maccaronio
,
R.
Degraeve
,
L.
Goux
, and
E.
Simoen
, “
Experimental evidence of the quantum point contact theory in the conduction mechanism of bipolar HfO2-based resistive random access memories
,”
J. Appl. Phys.
114
,
074509
(
2013
).
22.
E.
Miranda
and
J.
Suñé
,“
Analytic modeling of leakage current through multiple breakdown paths in SiO2 films
,” in
Proceedings of IEEE International Reliability Physics Symposium
(
2001
), p.
367
.
23.
X.
Lian
,
S.
Long
,
C.
Cagli
,
J.
Buckley
,
E.
Miranda
,
M.
Liu
, and
J.
Suñé
, “
Quantum Point Contact model of filamentary conduction in resistive switching devices
,”
ULIS
2012
,
101
104
.
You do not currently have access to this content.