Dysprosium (Dy) modified BiFeO3 [Bi1−xDyxFeO3 (x = 0.05, 0.10, and 0.15)] nanoparticles have been synthesized by a low temperature co-precipitation method. Rietveld analysis of X-ray diffraction data reveals a transformation from rhombohedral structure to orthorhombic structure with increase in the Dy concentration. From the transmission electron microscopy analysis, it is observed that the particle sizes of Bi1−xDyxFeO3 (x = 0.05, 0.10, and 0.15) nanoparticles range between 50–70, 40–50, and 30–50 nm, respectively. Raman spectra of Bi1−xDyxFeO3 (x = 0.05) belonging to rhombohedral (R3c) structure show 4A1 and 7E fundamental Raman modes in the range of 100–650 cm−1 and two-phonon scattering modes such as 2A4 (longitudinal optical), 2E8 (transverse optical (TO)), and 2E9 (TO) in the range of 950–1270 cm−1. Suppression, broadening, and shifting of Raman modes have been observed with further increase in Dy concentration. The fundamental Raman modes of Bi1−xDyxFeO3 (x = 0.15) are assigned under orthorhombic (pnma) rather than rhombohedral (R3c) as the Rietveld analysis of X-ray diffraction data predicts a structural transformation for this particular composition. A complete suppression of two phonon modes has been noticed for this composition. An anomaly in the temperature dependent dielectric studies has been observed in all the samples at the vicinity of Neel temperature indicating a magnetic ordering, and an increase in magnetization with increase of Dy concentration in BiFeO3 is noticed from the room temperature magnetic studies. P–E hysteresis loop studies show a decrease of remnant polarization (Pr) with the increase in Dy concentration and disappearance of hysteresis loop occurs for Bi1−xDyxFeO3 (x = 0.15) depicting a transformation from non-centrosymmetric (R3c) to centrosymmetric (Pnma) system.

1.
R.
Ramesh
and
N. A.
Spaldin
,
Nature Mater.
6
,
21
(
2007
).
2.
M.
Fiebig
,
J. Phys. D: Appl. Phys.
38
,
R123
R152
(
2005
).
3.
S. W.
Cheong
and
M.
Mostovoy
,
Nature Mater.
6
,
13
20
(
2007
).
4.
J.
Wang
,
J. B.
Neaton
,
H.
Zheng
,
V.
Nagarajan
,
S. B.
Ogale
,
B.
Liu
,
D.
Viehland
,
V.
Vaithyanathan
,
D. G.
Schlom
,
U. V.
Waghmare
,
N. A.
Spaldin
,
K. M.
Rabe
,
M.
Wutting
, and
R.
Ramesh
,
Science
299
,
1719
(
2003
).
5.
W. D.
Kingery
,
H. K.
Bowen
, and
D. R.
Uhlmann
,
Introduction to Ceramics
, 2nd ed. (
John Wiley and Sons
,
New York
,
1976
), pp.
926
927
.
6.
W.
Eerenstein
,
N. D.
Mathur
, and
J. F.
Scott
,
Nature
442
,
759
765
(
2006
).
7.
R.
Palai
,
R. S.
Katiyar
,
H.
Schmid
,
P.
Tissot
,
S. J.
Clark
,
J.
Robertson
,
S. A. T.
Redfern
,
G.
Catalan
, and
J. F.
Scott
,
Phys. Rev. B: Condens. Matter
77
,
014110
(
2008
).
8.
M.
Muneeswaran
,
P.
Jegatheesan
, and
N. V.
Giridharan
,
J. Exp. Nanosci.
8
,
341
346
(
2013
).
9.
P.
Uniyal
and
K. L.
Yadav
,
J. Phys.: Condens. Matter
21
,
012205
(
2009
).
10.
S.
Kazhugasalamoorthy
,
P.
Jegatheesan
,
R.
Mohandoss
,
N. V.
Giridharan
,
B.
Karthikeyan
,
R.
Justin Joseyphus
, and
S.
Dhanuskodi
,
J. Alloys Compd.
493
,
569
572
(
2010
).
11.
S. K.
Pradhan
,
B. K.
Roul
, and
D. R.
Sahu
,
Solid State Commun.
152
,
1176
1180
(
2012
).
12.
P.
Uniyal
and
K. L.
Yadav
,
Mater. Lett.
62
,
2858
2861
(
2008
).
13.
Z. X.
Cheng
,
X. L.
Wang
,
S. X.
Dou
,
H.
Kimura
, and
K. J.
Ozawa
,
Appl. Phys.
104
,
116109
(
2008
).
14.
M. S.
Sverre
,
E.
Mari-Ann
, and
G.
Tor
,
Chem. Mater.
21
,
169
173
(
2009
).
15.
S. T.
Zhang
,
Y.
Zhang
,
M. H.
Lu
,
C. L.
Du
,
Y. F.
Chen
,
Z. G.
Liu
,
Y. Y.
Zhu
, and
N. B.
Ming
,
Appl. Phys. Lett.
88
,
162901
(
2006
).
16.
S. R.
Das
,
R. N. P.
Choudhary
,
P.
Bhattacharya
,
S. R.
Katiyar
,
P.
Dutta
,
A. S.
Manivannan
, and
J. M. S.
Seehra
,
J. Appl. Phys.
101
,
034104
(
2007
).
17.
P.
Suresh
and
S.
Srinath
,
J. Appl. Phys.
113
,
17D920
(
2013
).
18.
G. S.
Lotey
and
N. K.
Verma
,
J. Nanopart. Res.
14
,
742
753
(
2012
).
19.
V. A.
Khomchenko
,
D. V.
Karpinsky
,
A. L.
Kholkin
,
N. A.
Sobolev
, and
G. N.
Kakazei
,
J. Appl. Phys.
108
,
074109
(
2010
).
20.
Y. J.
Wu
,
X. K.
Chen
,
J.
Zhang
, and
X. J.
Chen
,
Physica B
411
,
106
109
(
2013
).
21.
M.
Muneeswaran
,
P.
Jegatheesan
,
M.
Gopiraman
,
I. S.
Kim
, and
N. V.
Giridharan
,
Appl. Phys. A
114
,
853
859
(
2014
).
22.
M.
Marezio
,
J. P.
Remeika
, and
P. D.
Dernier
,
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
26
,
2008
(
1970
).
23.
V. A.
Streltsov
and
N.
Ishizawa
,
Acta Crystallogr., Sect. B: Struct. Sci.
55
,
1
(
1999
).
24.
I.
Levin
,
S.
Karimi
,
V.
Provenzano
,
C. L.
Dennis
,
H.
Wu
,
T.
Comyn
,
J.
Stevenson
,
I. S.
Ronald
, and
M.
Reaney
,
Phys. Rev. B
81
,
020103
R (
2010
).
25.
S. K.
Barbar
,
S.
Jangid
,
M.
Roy
, and
F. C.
Chou
,
Ceram. Int.
39
,
5359
5363
(
2013
).
26.
N.
Li
,
J.
Wu
,
Y.
Jiang
,
Z.
Xie
,
L.
Zheng
, and
Z. G.
Ye
,
J. Appl. Phys.
113
,
054102
(
2013
).
27.
J.
Xu
,
G.
Ye
, and
M.
Zeng
,
J. Alloys Comp.
587
,
308
312
(
2014
).
28.
A.
Watcharapasorn
and
S.
Jiansirisomboon
,
Ceram. Int.
34
,
769
772
(
2008
).
29.
R.
Haumont
,
R. S.
Martin
, and
C.
Byl
,
Phase Transitions
81
,
881
(
2008
).
30.
J. B.
Neaton
,
C.
Ederer
,
U. V.
Waghmare
,
N. A.
Spaldin
, and
K. M.
Rabe
,
Phys. Rev. B
71
,
014113
(
2005
).
31.
R.
Haumont
,
J.
Kreisel
,
P.
Bouvier
, and
F.
Hippert
,
Phys. Rev. B
73
,
132101
(
2006
).
32.
T. D.
Rao
,
T.
Karthik
,
A.
Srinivas
, and
S.
Asthana
,
Solid State Chem.
152
,
2071
2077
(
2012
).
33.
R.
Haumont
,
J.
Kreisel
, and
P.
Bouvier
,
Phase Transitions
82
,
496
(
2009
).
34.
N. V.
Minh
and
D. V.
Thang
,
J. Alloys Compd.
505
,
619
622
(
2010
).
35.
G. L.
Yuan
,
S. W.
Or
, and
H. W.
Chan
,
J. Appl. Phys.
101
,
064101
(
2007
).
36.
R.
Guo
,
L.
Fang
,
W.
Dong
,
F.
Zheng
, and
M.
Shen
,
J. Phys. Chem C
114
,
21390
21396
(
2010
).
37.
P. J.
Klar
and
T.
Rentschler
,
Solid State Commun.
103
,
341
345
(
1997
).
38.
J.
Bielecki
,
P.
Svedlindh
,
D. T.
Tibebu
,
S.
Cai
,
S. G.
Eriksson
,
L. B.
Orjesson
, and
C.
Knee
,
Phys. Rev. B
86
,
184422
(
2012
).
39.
M. V.
Abrashev
,
J.
Bäckström
,
L.
Börjesson
,
V. N.
Popov
,
R. A.
Chakalov
,
N.
Kolev
,
R. L.
Meng
, and
M.
Iliev
,
Phys. Rev. B
65
,
184301
(
2002
).
40.
M. N.
Iliev
,
A. P.
Litvinchuk
,
V. G.
Hadjiev
,
Y. Q.
Wang
,
J.
Cmaidalka
,
L. R.
Meng
,
Y. Y.
Sun
,
N.
Kolev
, and
M. V.
Abrashev
,
Phys. Rev. B
74
,
214301
(
2006
).
41.
A.
Sacuto
,
J.
Caysso
,
P.
Monod
, and
D.
Colson
,
Phys. Rev. B
61
,
7122
(
2000
).
42.
Y. J.
Jiang
,
L. Z.
Zeng
,
R. P.
Wang
,
Y.
Zhu
, and
Y. L.
Liu
,
J. Raman Spectrosc.
27
,
31
(
1996
).
43.
M. O.
Ramirez
,
M.
Krishnamurthi
,
S.
Denev
,
A.
Kumar
,
S. Y.
Yang
,
Y. H.
Chu
,
E.
Saiz
,
J.
Seidel
,
A.
Pyatakov
,
A. P.
Bush
,
D.
Viehland
,
J.
Orenstein
,
R.
Ramesh
, and
V.
Gopalan
,
Appl. Phys. Lett.
92
,
022511
(
2008
).
44.
M. K.
Singh
,
S.
Ryu
, and
H. M.
Jang
,
Phys. Rev. B
72
,
132101
(
2005
).
45.
C. G.
Koops
,
Phys. Rev.
83
,
121
(
1951
).
46.
R.
Mazumder
,
P. S.
Devi
,
D.
Bhattacharya
,
P.
Choudhury
,
A.
Sen
, and
M.
Raja
,
Appl. Phys. Lett.
91
,
062510
(
2007
).
47.
T. J.
Park
,
G. C.
Papaefthymiou
,
A. J.
Viescas
,
A. R.
Moodenbaugh
, and
S. S.
Wong
,
Nano Lett.
7
,
766
772
(
2007
).
48.
M.
Arora
,
P. C.
Sati
,
S.
Chauhan
,
H.
Singh
,
K. L.
Yadav
,
S.
Chhoker
, and
M.
Kumar
,
Mater. Lett.
96
,
71
73
(
2013
).
49.
F. Z.
Qian
,
J. S.
Jiang
,
D. M.
Jiang
,
W. G.
Zhang
, and
J. H.
Liu
,
J. Phys. D: Appl. Phys.
43
,
025403
(
2010
).
You do not currently have access to this content.