We theoretically investigate thermal conductivity in silicon nanomeshes using Monte Carlo simulations of phonon transport. Silicon membranes of 100 nm thickness with randomly located pores of 50 nm diameter are considered. The effects of material porosity and pore surface roughness are examined. Nanomesh porosity is found to have a strong detrimental effect on thermal conductivity. At room temperature, a porosity of 50% results in ∼80% reduction in thermal conductivity. Boundary roughness scattering further degrades thermal conductivity, but its effect is weaker. Thermal transport can additionally be affected by the specific arrangement of the pores along the transport direction.

1.
J.-K.
Yu
,
S.
Mitrovic
,
D.
Tham
,
J.
Varghese
, and
J. R.
Heath
, “
Reduction of thermal conductivity in phononic nanomesh structures
,”
Nat. Nanotechnol.
5
(
10
),
718
721
(
2010
).
2.
J.
Tang
,
H.-T.
Wang
,
D. H.
Lee
,
M.
Fardy
,
Z.
Huo
,
T. P.
Russell
, and
P.
Yang
, “
Holey silicon as an efficient thermoelectric material
,”
Nano Lett.
10
(
10
),
4279
4283
(
2010
).
3.
P. E.
Hopkins
,
C. M.
Reinke
,
M. F.
Su
,
R. H.
Olsson
 III
,
E. A.
Shaner
,
Z. C.
Leseman
,
J. R.
Serrano
,
L. M.
Phinney
, and
I. E.
Kady
, “
Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning
,”
Nano Lett.
11
(
1
),
107
112
(
2011
).
4.
A.
Wolf
and
R.
Brendel
, “
Thermal conductivity of sintered porous silicon films
,”
This Solid Films
513
,
385
(
2006
).
5.
A. I.
Boukai
,
Y.
Bunimovich
,
J.
Tahir-Kheli
,
J. K.
Yu
,
W. A.
Goddard
, and
J. R.
Heath
, “
Silicon nanowires as efficient thermoelectric materials
,”
Nature
451
(
7175
),
168
171
(
2008
).
6.
A. I.
Hochbaum
,
R.
Chen
,
R. D.
Delgado
,
W.
Liang
,
E. C.
Garnett
,
M.
Najarian
,
A.
Majumdar
, and
P.
Yang
, “
Enhanced thermoelectric performance of rough silicon nanowires
,”
Nature
451
,
163
167
(
2008
).
7.
K.
Nielsch
,
J.
Bachmann
,
J.
Kimling
, and
H.
Bottner
, “
Thermoelectric nanostructures: From physical model systems towards nanograined composites
,”
Adv. Energy Mater.
1
,
713
731
(
2011
).
8.
J.-H.
Lee
,
G.
Galli
, and
J. C.
Grossman
, “
Nanoporous Si as an efficient thermoelectric material
,”
Nano Lett.
8
(
11
),
3750
3754
(
2008
).
9.
S. P.
Hepplestone
and
G. P.
Srivastava
, “
Lattice dynamics and thermal properties of phononic semiconductors
,”
Phys. Rev. B
84
,
115326
(
2011
).
10.
C.
Bera
,
N.
Mingo
, and
S.
Volz
, “
Marked effects of alloying on the thermal conductivity of nanoporous materials
,”
Phys. Rev. Lett.
104
,
115502
(
2010
).
11.
R.
Prasher
, “
Transverse thermal conductivity of porous materials made from aligned nano- and microcylindrical pores
,”
J. Appl. Phys.
100
,
064302
(
2006
).
12.
Q.
Hao
,
G.
Chen
, and
M. S.
Jeng
, “
Frequency-dependent Monte Carlo simulations of phonon transport in two-dimensional porous silicon with aligned pores
,”
J. Appl. Phys.
106
(
11
),
114321
(
2009
).
13.
J. D.
Chung
and
M.
Kaviany
, “
Effects of phonon pore scattering and pore randomness on effective conductivity of porous silicon
,”
Int. J. Heat Mass Transfer
43
(
4
),
521
538
(
2000
).
14.
K.
Miyazaki
,
T.
Arashi
,
D.
Makino
, and
H.
Tsukamoto
, “
Heat conduction in microstructured materials
,”
IEEE Trans. Compon. Packag. Technol.
29
(
2
),
247
253
(
2006
).
15.
R. H.
Tarkhanyana
and
D. G.
Niarchos
, “
Reduction in lattice thermal conductivity of porous materials due to inhomogeneous porosity
,”
Int. J. Thermal Sci.
67
,
107
112
(
2013
).
16.
D.
Lacroix
,
K.
Joulain
, and
D.
Lemonnier
, “
Monte Carlo transient phonon transport in silicon and germanium at nanoscales
,”
Phys. Rev. B
72
,
064305
(
2005
).
17.
S.
Mazumder
and
A.
Majumdar
, “
Monte Carlo study of phonon transport in solid thin films including dispersion and polarization
,”
J. Heat Transfer
123
,
749
(
2001
).
18.
Z.
Aksamija
and
I.
Knezevic
, “
Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes
,”
Phys. Rev. B
82
,
045319
(
2010
).
19.
Y.
Chen
,
D.
Li
,
J. R.
Lukes
, and
A.
Majumdar
, “
Monte Carlo simulation of silicon nanowire thermal conductivity
,”
J. Heat Transfer
127
,
1129
(
2005
).
20.
D.
Lacroix
,
K.
Joulain
,
D.
Terris
, and
D.
Lemonnier
, “
Monte Carlo simulation of phonon confinement in silicon nanostructures: Application to the determination of the thermal conductivity of silicon nanowires
,”
Appl. Phys. Lett.
89
(
10
),
103104
(
2006
).
21.
J.
Randrianalisoa
and
D.
Baillis
, “
Monte Carlo simulation of steady-state microscale phonon heat transport
,”
J. Heat Transfer
130
(
7
),
072404
(
2008
).
22.
E. B.
Ramayya
,
L. N.
Maurer
,
A. H.
Davoody
, and
I.
Knezevic
, “
Thermoelectric properties of ultrathin silicon nanowires
,”
Phys. Rev. B
86
,
115328
(
2012
).
23.
M.-S.
Jeng
,
D.
Song
,
G.
Chen
, and
R.
Yang
, “
Modeling the thermal conductivity and phonon transport in nanoparticle composites using Monte Carlo simulation
,”
J. Heat Transfer
130
(
4
),
042410
(
2008
).
24.
A.
McGaughey
and
A.
Jain
, “
Nanostructure thermal conductivity prediction by Monte Carlo sampling of phonon free paths
,”
Appl. Phys. Lett.
100
,
061911
(
2012
).
26.
E.
Pop
,
R. W.
Dutton
, and
K. E.
Goodson
, “
Analytic band Monte Carlo model for electron transport in Si including acoustic and optical phonon dispersion
,”
J. Appl. Phys.
96
,
4998
(
2004
).
27.
R.
Prasher
,
T.
Tong
, and
A.
Majumdar
, “
Approximate analytical models for phonon specific heat and ballistic thermal conductance of nanowires
,”
Nano Lett.
8
,
99
(
2008
).
28.
H.
Karamitaheri
,
N.
Neophytou
,
M. K.
Taheri
,
R.
Faez
, and
H.
Kosina
, “
Calculation of confined phonon spectrum in narrow silicon nanowires using the valence force field method
,”
J. Electron. Mater.
42
(
7
),
2091
2097
(
2013
).
29.
M. G.
Holland
, “
Analysis of lattice thermal conductivity
,”
Phys. Rev.
132
(
6
),
2461
2471
(
1963
).
30.
R.
Peterson
, “
Direct simulation of phonon-mediated heat transfer in a debye crystal
,”
J. Heat Transfer
116
,
815
(
1994
).
31.
C.
Melis
and
L.
Colombo
, “
Lattice thermal conductivity of Si1xGex nanocomposites
,”
Phys. Rev. Lett.
112
,
065901
(
2014
).
32.
Z.
Aksamija
and
I.
Knezevic
, “
Thermal conductivity of Si1xGex/Si1yGey superlattices: Competition between interfacial and internal scattering
,”
Phys. Rev. B
88
,
155318
(
2013
).
33.
C.
Jeong
,
S.
Datta
, and
M.
Lundstrom
, “
Thermal conductivity of bulk and thin-film silicon: A Landauer approach
,”
J. Appl. Phys.
111
,
093708
(
2012
).
34.
H.
Karamitaheri
,
N.
Neophytou
, and
H.
Kosina
, “
Anomalous diameter dependence of thermal transport in ultra-narrow Si nanowires
,”
J. Appl. Phys.
115
,
024302
(
2014
).
You do not currently have access to this content.