In this study, the rheological properties and an application of bi-dispersed magnetorheological fluid (MRF) based on plate-like iron particles are experimentally investigated. A bi-dispersed MR Fluid is prepared using two different micron-scale sizes of plate-like iron particles. In the absence of a magnetic field, the properties of the fluid are isotropic. Upon the application of a magnetic field, the magnetized particles form a chain aligned in the direction of the field, which promotes the appearance of a yield stress. The reversible transition from solid to liquid is the basic requirement of MR applications. Due to the anisotropy in the shape and formation of a less compact structure in the iron plate-like particles, weak sedimentation and good redispersibility of the proposed MR fluid are created. The physical properties of the proposed MR fluids are evaluated and applied to the design of a small-sized controllable MR vibration damper, which can be used for vibration control of a washing machine. The MR damper is a semi-active device that dissipates energy during vibration motion to increase the stability of the application system. Three different weight fractions of the bi-dispersed MR fluids are prepared, and their rheological properties are presented and discussed. Based on their rheological properties, the figures of merit of the proposed MR fluids are derived. A comparison of these figures of merit gives the nominal behavior of the MR fluids, which are important in the design of the application device. A stability test is also performed to check the settling rate of MR fluids per day. The change in damping force due to the problem of particles settling in the MRF and the field-dependent damping force are measured with the MR damper operated just after filling the MRF and with the MR damper operated after waiting for 48 h after filling. With basic rheological properties and outstanding mechanical properties, it is clearly demonstrated that the proposed MR fluid which has a precise weight fraction can be applicable to controllable MR damper for vibration control.

1.
K.
Shahrivar
and
J.
de Vicente
,
Smart Mater. Struct.
23
,
025012
(
2014
).
2.
J.
Takimoto
,
H.
Takeda
,
Y.
Masubuchi
, and
K.
Koyama
,
Int. J. Mod. Phys. B
13
,
2028
(
1999
).
3.
B. J.
Park
,
K. H.
Song
, and
H. J.
Choi
,
Mater. Lett.
63
,
1350
(
2009
).
4.
R. C.
Bell
,
E. D.
Miller
,
J. O.
Karli
,
A. N.
Vavreck
, and
D. T.
Zimmerman
,
Int. J. Mod. Phys. B
21
,
5018
(
2007
).
5.
G. T.
Ngatu
,
N. M.
Wereley
,
J. O.
Karli
, and
R. C.
Bell
,
Smart Mater. Struct.
17
,
045022
(
2008
).
6.
R. C.
Bell
,
J. O.
Karli
,
A. N.
Vavreck
,
D. T.
Zimmerman
,
G. T.
Ngatu
, and
N. M.
Wereley
,
Smart Mater. Struct.
17
,
015028
(
2008
).
7.
M. T.
López-López
,
P.
Kuzhir
, and
G.
Bossis
,
J. Rheol.
53
,
115
(
2009
).
8.
P.
Kuzhir
,
M. T.
López-López
, and
G.
Bossis
,
J. Rheol.
53
,
127
(
2009
).
9.
P.
Kuzhir
,
M. T.
López-López
, and
G.
Bossis
,
Phys. Fluids
21
,
053101
(
2009
).
10.
F. F.
Fang
and
H. J.
Choi
,
J. Appl. Phys.
103
,
07A301
(
2008
).
11.
F. F.
Fang
,
H. J.
Choi
, and
W. S.
Choi
,
Colloid Polym. Sci.
288
,
79
(
2010
).
12.
I. B.
Jang
,
H. B.
Kim
,
J. Y.
Lee
,
J. L.
You
,
H. J.
Choi
, and
M. S.
Jhon
,
J. Appl. Phys.
97
,
10Q912
(
2005
).
13.
S. W.
Ko
,
J. Y.
Lim
,
B. J.
Park
,
M. S.
Yang
, and
H. J.
Choi
,
J. Appl. Phys.
105
,
07E703
(
2009
).
14.
J.
de Vicente
,
M. T.
López-López
,
F.
González-Caballero
, and
J. D. G.
Durán
,
J. Rheol.
47
,
1093
(
2003
).
15.
O.
Volkova
,
G.
Bossis
,
M.
Guyot
,
V.
Bashtovoi
, and
A.
Reks
,
J. Rheol.
44
,
91
(
2000
).
16.
G. A.
van Ewijk
,
G. J.
Vroege
, and
A. P.
Philipse
,
J. Magn. Magn. Mater.
201
,
31
(
1999
).
17.
G.
Bossis
,
O.
Volkova
,
S.
Lacis
, and
A.
Meunier
,
Magnetorheology: Fluids, Structures, and Rheology, in Ferrofluids
, edited by
S.
Odenbach
(
Springer
,
Bremen, Germany
,
2002
), p.
202
.
18.
A.
Dang
,
L.
Ooi
,
J.
Fales
, and
P.
Strove
,
Ind. Eng. Chem. Res.
39
,
2269
(
2000
).
19.
B. D.
Chin
,
J. H.
Park
,
M. H.
Kwon
, and
O. O.
Park
,
Rheol. Acta
40
,
211
(
2001
).
20.
Z. Y.
Chen
,
X.
Tang
,
G. C.
Zhang
,
Y.
Jin
,
W.
Ni
, and
Y. R.
Zhu
,
in Proceedings of the 6th International Conference on Electro-rheological Fluids, Magneto- rheological Suspensions and their Applications
, edited by
M.
Nakano
and
K.
Koyama
(
World Scientific
,
Singapore
,
1998
), Vol.
1
, p.
486
.
21.
J.
de Vicente
,
D. J.
Klingenberg
, and
R.
Hidalgo-Alvarez
,
Soft Matter
7
,
3701
(
2011
).
22.
H.
See
,
A.
Kawai
, and
F.
Ikazaki
,
Rheol. Acta
41
,
55
(
2002
).
23.
Cl.
Kormann
,
H. M.
Laun
, and
G.
Klett
,
Int. J. Mod. Phys. B
10
,
3167
(
1996
).
24.
M. T.
Lopez-Lopez
,
P.
Kuzhir
,
S.
Lacis
,
G.
Bossis
,
F.
Gonzalez-Caballero
, and
J. D. G.
Duran
,
J. Phys.: Condens. Matter
18
,
S2803
(
2006
).
25.
J. L.
Viota
,
J. D. G.
Duran
, and
A. V.
Delgado
,
Eur. Phys. J. E
29
,
87
(
2009
).
26.
G. R.
Iglesias
,
M. T.
López-López
,
J. D. G.
Durán
,
F.
González-Caballero
, and
A. V.
Delgado
,
J. Colloid Interface Sci.
377
,
153
(
2012
).
27.
R. C.
Kanu
and
M. T.
Shaw
,
Int. J. Mod. Phys. B
10
,
2925
(
1996
).
28.
R. C.
Kanu
and
M. T.
Shaw
,
J. Rheol.
42
,
657
(
1998
).
29.
J.
de Vicente
,
V.
Fernando
,
J. P.
Segovia-Gutierrez
,
M.
del
,
P.
Morales
, and
R.
Hidalgo-Alvarez
,
J. Rheol.
54
,
1337
(
2010
).
30.
J.
de Vicente
,
J. P.
Segovia-Gutierrez
,
E.
Andablo-Reyes
,
F.
Vereda
, and
R.
Hidalgo-Alvarez
,
J. Chem. Phys.
131
,
194902
(
2009
).
31.
M.
Ahmadian
and
X.
Song
, in
Proceedings of 1999 ASME Design Engineering Technical Conference
,
Las Vegas, Nevada
,
1999
.
32.
M. J.
Chrzan
and
J. D.
Carlson
, in
Proceedings of the 8th Annual Symposium on Smart Structures and Materials
,
Newport Beach, CA, USA
,
2001
.
33.
D.
Fischer
and
R.
Isermann
,
Control Eng. Pract.
12
,
1353
(
2004
).
34.
K. J.
Kim
,
C. W.
Lee
, and
J. H.
Koo
,
Smart Mater. Struct.
17
,
035006
(
2008
).
35.
W. H.
Li
,
X. Y.
Wang
,
X. Z.
Zhang
, and
Y.
Zhou
,
Smart Mater. Struct.
18
,
074007
(
2009
).
36.
Q. H.
Nguyen
and
S. B.
Choi
,
Smart Mater. Struct.
18
,
035012
(
2009
).
37.
Q. H.
Nguyen
and
S. B.
Choi
,
Smart Mater. Struct.
18
,
015013
(
2009
).
38.
M. R.
Jolly
,
J. W.
Bender
, and
J. D.
Carlson
,
J. Intell. Mater. Syst. Struct.
10
,
5
(
1999
).
39.
J. C.
Poynor
, M.S. Thesis,
Virginia Polytechnic Institute and State University, Blacksburg, VA
,
2001
.
40.
L. J.
Woo
, Master's thesis,
Inha university, Korea
2013
.
41.
C.
Spelta
,
F.
Previdi
,
S. M.
Savaresi
,
G.
Fraternalec
, and
N.
Gaudianoc
,
Mechatronics
19
,
410
(
2009
).
42.
K.
Shah
,
J. S.
Oh
,
S. B.
Choi
, and
R. V.
Upadhyay
,
J. Appl. Phys.
114
,
213904
(
2013
).
43.
K.
Shah
,
D. X.
Phu
,
M. S.
Seong
,
R. V.
Upadhyay
, and
S. B.
Choi
,
Smart Mater. Struct.
23
,
027001
(
2014
).
44.
R. V.
Upadhyay
,
Z.
Laherisheth
, and
K.
Shah
,
Smart Mater. Struct.
23
,
015002
(
2014
).
45.
J. M.
Ginder
,
L. C.
Davis
and
L. D.
Elie
,
Int. J. Mod. Phys. B
10
,
3293
(
1996
).
46.
C. L. A.
Berli
and
J.
de Vicente
,
Appl. Phys. Lett.
101
,
021903
(
2012
).
47.
J. P.
Friend
and
R. J.
Hunter
,
J. Colloid Interface Sci.
37
,
548
(
1971
).
You do not currently have access to this content.