A Hall thruster is a cross-field plasma device used for spacecraft propulsion. An important unresolved issue in the development of Hall thrusters concerns the effect of discharge oscillations in the range of 10–30 kHz on their performance. The use of a high speed Langmuir probe system and ultra-fast imaging of the discharge plasma of a Hall thruster suggests that the discharge oscillation mode, often called the breathing mode, is strongly correlated to an axial global ionization mode. Stabilization of the global oscillation mode is achieved as the magnetic field is increased and azimuthally rotating spokes are observed. A hybrid-direct kinetic simulation that takes into account the transport of electronically excited atoms is used to model the discharge plasma of a Hall thruster. The predicted mode transition agrees with experiments in terms of the mean discharge current, the amplitude of discharge current oscillation, and the breathing mode frequency. It is observed that the stabilization of the global oscillation mode is associated with reduced electron transport that suppresses the ionization process inside the channel. As the Joule heating balances the other loss terms including the effects of wall loss and inelastic collisions, the ionization oscillation is damped, and the discharge oscillation stabilizes. A wide range of the stable operation is supported by the formation of a space charge saturated sheath that stabilizes the electron axial drift and balances the Joule heating as the magnetic field increases. Finally, it is indicated from the numerical results that there is a strong correlation between the emitted light intensity and the discharge current.

1.
J. P.
Boeuf
and
L.
Garrigues
,
J. Appl. Phys.
84
,
3541
(
1998
).
2.
J. M.
Fife
, “
Hybrid-PIC modeling and electrostatic probe survey of Hall thrusters
,” Ph.D. dissertation (
MIT
,
1998
).
3.
S.
Barral
,
K.
Makowski
,
Z.
Peradzynski
,
N.
Gascon
, and
M.
Dudeck
,
Phys. Plasmas
10
,
4137
(
2003
).
4.
S.
Barral
and
E.
Ahedo
,
Phys. Rev. E
79
,
046401
(
2009
).
5.
R. B.
Lobbia
and
A. D.
Gallimore
,
Two-Dimensional Time-Resolved Breathing Mode Plasma Fluctuation Variation with Hall Thruster Discharge Settings
(
IEPC 2009-106
,
Ann Arbor, MI
,
2009
).
6.
M.
McDonald
,
C.
Bellant
,
B. S.
Pierre
, and
A. D.
Gallimore
, “
Measurement of cross-field electroncurrent in a hall thruster due to rotating spoke instabilities
,”
AIAA
Paper 2011-5810,
2011
.
7.
M. J.
Sekerak
,
B. W.
Longmier
,
A. D.
Gallimore
,
D. L.
Brown
,
R. R.
Hofer
, and
J. E.
Polk
, “
Mode transitions in hall effect thrusters
,”
AIAA
Paper 2013-4116,
2013
.
8.
J.
Szabo
,
N.
Warner
,
M.
Martinez-Sanchez
, and
O.
Batishchev
,
J. Prop. Power
30
,
197
(
2014
).
9.
K.
Hara
,
I. D.
Boyd
, and
V. I.
Kolobov
,
Phys. Plasmas
19
,
113508
(
2012
).
10.
K.
Hara
and
I. D.
Boyd
,
Low Frequency Oscillation Analysis of a Hall Thruster Using a One-Dimensional Hybrid-Direct Kinetic Simulation
(
IEPC-2013-266
,
Washington D.C.
,
2013
).
11.
J. W.
Koo
and
I. D.
Boyd
,
Phys. Plasmas
13
,
033501
(
2006
).
12.
F. I.
Parra
,
E.
Ahedo
,
J. M.
Fife
, and
M.
Martínez-Sánchez
,
J. Appl. Phys.
100
,
023304
(
2006
).
13.
R. R.
Hofer
,
I.
Katz
,
I. G.
Mikellides
,
D. M.
Goebel
,
K. K.
Jameson
,
R. M.
Sullivan
, and
L. K.
Johnson
, “
Efficacy of electron mobility models in hybrid-PIC hall thruster simulations
,”
AIAA
Paper 2008-4924,
2008
.
14.
I. G.
Mikellides
and
I.
Katz
,
Phys. Rev. E
86
,
046703
(
2012
).
15.
R.
Hofer
,
D.
Goebel
,
I.
Mikellides
, and
I.
Katz
, “
Design of a laboratory hall thruster with magnetically shielded channel walls, phase II: Experiments
,”
AIAA
Paper 2012-3788,
2012
.
16.
K. K.
Jameson
, “
Investigation of hollow cathode effects on total thruster efficiency in a 6 kW Hall thruster
,” Ph.D. dissertation (
University of California, Los Angeles
,
2008
).
17.
D. L.
Brown
, “
Investigation of low discharge voltage Hall thruster characteristics and evaluation of loss mechanisms
,” Ph.D. dissertation (
University of Michigan
,
2009
).
18.
B. M.
Reid
, “
The influence of neutral flow ratein the operation of Hall thrusters
,” Ph.D. dissertation (
University of Michigan
,
2009
).
19.
W.
Huang
, “
Study of Hall thruster discharge channel wall erosion via optical diagnostics
,” Ph.D. dissertation (
University of Michigan
,
2011
).
20.
R.
Shastry
, “
Experimental characterization of the near-wall region in Hall thrusters and its implications on performance and lifetime
,” Ph.D. dissertation (
University of Michigan
,
2011
).
21.
M.
McDonald
, “
Electron transport in Hall thrusters
,” Ph.D. dissertation (
University of Michigan
,
2012
).
22.
M.
Sekerak
, “
Plasma oscillations and operational modes in hall Effect Thrusters
,” Ph.D. dissertation (
University of Michigan
,
2014
).
23.
N.
Gascon
,
M.
Dudeck
, and
S.
Barral
,
Phys. Plasmas
10
,
4123
(
2003
).
24.
V.
Puech
and
S.
Mizzi
,
J. Phys. D: Appl. Phys.
24
,
1974
(
1991
).
25.
D.
Rapp
and
P.
Englander-Golden
,
J. Chem. Phys.
43
,
1464
(
1965
).
26.
D.
Ton-That
and
M. R.
Flannery
,
Phys. Rev. A
15
,
517
(
1977
).
27.
J.
Meunier
,
P.
Belenguer
, and
J. P.
Boeuf
,
J. Appl. Phys.
78
,
731
(
1995
).
28.
M.
Hayashi
,
J. Phys. D: Appl. Phys.
16
,
581
(
1983
).
29.
M.
Arora
and
P. L.
Roe
,
J. Comput. Phys.
132
,
3
(
1997
).
30.
G. J. M.
Hagelaar
,
J.
Bareilles
,
L.
Garrigues
, and
J. P.
Boeuf
,
J. Appl. Phys.
91
,
5592
(
2002
).
31.
J.
Bareilles
,
G. J. M.
Hagelaar
,
L.
Garrigues
,
C.
Boniface
,
J. P.
Boeuf
, and
N.
Gascon
,
Phys. Plasmas
11
,
3035
(
2004
).
32.
N.
Gascon
,
C.
Perot
,
G.
Bonhomme
,
X.
Caron
,
S.
Bechu
,
P.
Lasgorceix
,
B.
Izrar
, and
M.
Dudeck
, “
Signal processing and non-linear behavior of a stationary plasma thruster—First results
,”
AIAA
Paper No. 99-2427,
1999
.
33.
G. N.
Tilinin
,
Sov. Phys. Tech. Phys.
22
,
974
(
1977
).
34.
M.
McDonald
and
A. D.
Gallimore
,
Comparison of Breathing and Spoke Mode Strengths in the H6 Hall Thruster Using High Speed Imaging
(
IEPC 2013-353
,
Washington D.C.
,
2013
).
35.
D.
Sydorenko
,
A.
Smolyakov
,
I.
Kaganovich
, and
Y.
Raitses
,
Phys. Plasmas
15
,
053506
(
2008
).
36.
M. D.
Campanell
,
A. V.
Khrabrov
, and
I. D.
Kaganovich
,
Phys. Rev. Lett.
108
,
235001
(
2012
).
37.
B. A.
Jorns
and
R. R.
Hofer
, “
Low frequency plasma oscillations in a 6-kW magnetically shielded hall thruster
,”
AIAA
Paper 2013-4119,
2013
.
38.
D. H.
Manzella
,
Stationary Plasma Thruster Plume Emissions
(
IEPC-93-097
,
Seattle, WA
,
1993
).
39.
R. R.
Hofer
and
A. D.
Gallimore
,
J. Prop. Power
22
,
732
(
2006
).
You do not currently have access to this content.