We present atomistic valence force field calculations of thermal transport in Si nanowires of diameters from 12 nm down to 1 nm. We show that as the diameter is reduced, the phonon density-of-states and transmission function acquire a finite value at low frequency, in contrast to approaching zero as in the bulk material. It turns out that this effect results in what Ziman described as the “problem of long longitudinal waves” [J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Clarendon, Oxford, 1962)], which states that the thermal conductivity of a material increases as its length is increased due to the vanishing scattering for long-wavelength phonons. We show that this thermal transport improvement also appears in nanowires as their diameter is decreased below D = 5 nm (not only as the length increases), originating from the increase in the density of the long wavevector modes. The observation is present under ballistic transport conditions, and further enhanced with the introduction of phonon-phonon scattering. Because of this, in such ultra-narrow nanowires, as the diameter is reduced, phonon transport is dominated more and more by lower energy phonons with longer mean-free paths. We show that ∼80% of the heat is carried by phonons with energies less than 5 meV, most with mean-free paths of several hundreds of nanometers.

1.
J. M.
Ziman
,
Electrons and Phonons: The Theory of Transport Phenomena in Solids
(
Clarendon
,
Oxford
,
1962
).
2.
W. S.
Hurst
and
D. R.
Frankl
,
Phys. Rev.
186
(
3
),
801
810
(
1969
).
3.
G. P.
Srivastava
,
The Physics of Phonons
(
Taylor & Francis Group
,
New York
,
1990
).
4.
J. A.
P.-Gutierrez
,
J. Y.
Murthy
, and
R.
Viskanta
,
J. Appl. Phys.
106
,
063532
(
2009
).
5.
M. G.
Holland
,
Phys. Rev.
132
(
6
),
2461
2471
(
1963
).
6.
M.
Asen-Palmer
,
K.
Bartkowski
,
E.
Gmelin
,
M.
Cardona
,
A. P.
Zhernov
,
A. V.
Inyushkin
,
A.
Taldenkov
,
V. I.
Ozhogin
,
K. M.
Itoh
, and
E. E.
Haller
,
Phys. Rev. B
56
,
9431
(
1997
).
7.
N.
Mingo
and
D. A.
Broido
,
Nano Lett.
5
,
1221
1225
(
2005
).
8.
D. L.
Nika
,
A. S.
Askerov
, and
A. A.
Balandin
,
Nano Lett.
12
,
3238
3244
(
2012
).
9.
L.
Hu
,
W. J.
Evans
, and
P.
Keblinski
,
J Appl. Phys.
110
,
113511
(
2011
).
10.
D.
Donadio
and
G.
Galli
,
Nano Lett.
10
,
847
851
(
2010
).
11.
I.
Ponomareva
,
D.
Srivastava
, and
M.
Menon
,
Nano Lett.
7
,
1155
1159
(
2007
).
12.
N.
Mingo
,
L.
Yang
,
D.
Li
, and
A.
Majumdar
,
Nano Lett.
3
,
1713
1716
(
2003
).
13.
T.
Markussen
,
A.-P.
Jauho
, and
M.
Brandbyge
,
Nano Lett.
8
,
3771
3775
(
2008
).
14.
H.
Karamitaheri
,
N.
Neophytou
,
M. K.
Taheri
,
R.
Faez
, and
H.
Kosina
,
J. Electr. Mater.
42
,
2091
2097
(
2013
).
15.
K.
Termentzidis
,
T.
Barreteau
,
Y.
Ni
,
S.
Merabia
,
X.
Zianni
,
Y.
Chalopin
,
P.
Chantrenne
, and
S.
Voltz
,
Phys. Rev. B
87
,
125410
(
2013
).
16.
S. P.
Hepplestone
and
G. P.
Srivastava
,
Phys. Rev. B
74
,
165420
(
2006
).
17.
A. I.
Hochbaum
,
R.
Chen
,
R. D.
Delgado
,
W.
Liang
,
E. C.
Garnett
,
M.
Najarian
,
A.
Majumdar
, and
P.
Yang
,
Nature
451
,
163
168
(
2008
).
18.
T.
Markussen
,
Nano Lett.
12
,
4698
4704
(
2012
).
19.
H.
Karamitaheri
,
N.
Neophytou
,
M.
Pourfath
,
R.
Faez
, and
H.
Kosina
,
J. Appl. Phys.
111
,
054501
(
2012
).
20.
J.
Wang
and
J.-S.
Wang
,
Appl. Phys. Lett.
90
,
241908
(
2007
).
21.
L.
Lindsay
,
D. A.
Broido
, and
N.
Mingo
,
Phys. Rev. B
80
,
125407
(
2009
).
22.
C. W.
Chang
,
D.
Okawa
,
H.
Garcia
,
A.
Majumdar
, and
A.
Zettl
,
Phys. Rev. Lett.
101
,
075903
(
2008
).
23.
G.
Wu
and
J.
Dong
,
Phys. Rev. B
71
,
115410
(
2005
).
24.
S. P.
Hepplestone
and
G. P.
Srivastava
,
J. Phys.: Conf. Ser.
61
,
414
419
(
2007
).
25.
S. P.
Hepplestone
, Ph.D. Thesis,
University of Exeter
, U.K.,
2007
.
26.
S.
Lepri
,
R.
Livi
, and
A.
Politi
,
Phys. Rev. Lett.
78
,
1896
(
1997
).
27.
28.
C.
Kittel
,
Introduction to Solid State Physics
(
Wiley
,
2005
).
29.
Z.
Aksamija
and
I.
Knezevic
,
Phys. Rev. B
82
,
045319
(
2010
).
30.
J. E.
Turney
,
A. J. H.
McGaughey
, and
C. H.
Amon
,
J. Appl. Phys.
107
,
024317
(
2010
).
31.
Z.
Tian
,
K.
Esfarjani
,
J.
Shiomi
,
A. S.
Henry
, and
G.
Chen
,
Appl. Phys. Lett.
99
,
053122
(
2011
).
32.
W.
Liu
and
M.
Asheghi
,
J. Appl. Phys.
98
,
123523
(
2005
).
33.
M.
Liangraksa
and
I. K.
Puri
,
J. Appl. Phys.
109
,
113501
(
2011
).
34.
X.
Lu
,
J. Appl. Phys.
106
,
064305
(
2009
).
35.
Z.
Sui
and
I. P.
Herman
,
Phys. Rev. B
48
,
17938
17953
(
1993
).
36.
A.
Paul
,
M.
Luisier
, and
G.
Klimeck
,
J. Comput. Electron.
9
,
160
172
(
2010
).
37.
Z.
Aksamija
and
I.
Knezevic
,
J. Comput. Electron.
9
,
173
(
2010
).
38.
H.
Karamitaheri
,
N.
Neophytou
, and
H.
Kosina
,
J. Appl. Phys.
113
,
204305
(
2013
).
39.
C.
Jeong
,
S.
Datta
, and
M.
Lundstrom
,
J. Appl. Phys.
111
,
093708
(
2012
).
40.
M.
Luisier
,
Phys. Rev. B
86
,
245407
(
2012
).
41.
S.
Ghosh
,
W.
Bao
,
D. L.
Nika
,
S.
Subrina
,
E. P.
Pokatilov
,
C. N.
Lau
, and
A. A.
Balandin
,
Nature Mater.
9
,
555
558
(
2010
).
42.
43.
E. B.
Ramayya
,
L. N.
Maurer
,
A. H.
Davoody
, and
I.
Knezevic
,
Phys. Rev. B
86
,
115328
(
2012
).
44.
J.
Zou
and
A.
Balandin
,
J. Appl. Phys.
89
,
2932
(
2001
).
45.
J.
Carrete
,
L. J.
Gallego
,
L. M.
Varela
, and
N.
Mingo
,
Phys. Rev. B
84
,
075403
(
2011
).
46.
H.
Karamitaheri
,
M.
Pourfath
,
R.
Faez
, and
H.
Kosina
,
IEEE Trans. Electron Devices
60
,
2142
(
2013
).
47.
M.
Luisier
,
J. Appl. Phys.
110
,
074510
(
2011
).
48.
M.
Zebarjadi
,
K.
Esfarjani
,
M. S.
Dresselhaus
,
Z. F.
Ren
, and
G.
Chen
,
Energy Environ. Sci.
5
,
5147
(
2012
).
49.
A. I.
Boukai
,
Y.
Bunimovich
,
J.
Tahir-Kheli
,
J.-K.
Yu
,
W. A.
Goddard
, and
J. R.
Heath
,
Nature
451
,
168
171
(
2008
).
50.
D.
Donadio
and
G.
Galli
,
Phys. Rev. Lett.
102
,
195901
(
2009
).
You do not currently have access to this content.