Vertically orientated single crystalline silicon nanowire (SiNW) arrays with controlled diameters are fabricated via a metal-assisted chemical etching method. The diameter of the fabricated nanowires is controlled by simply varying the etching time in HF/H2O2 electrolytes. The fabricated SiNWs have diameters ranging from 117 to 650 nm and lengths from 8 to 18 μm. The optical measurements showed a significant difference in the reflectance/absorption of the SiNWs with different diameters, where the reflectance increases with increasing the diameter of the SiNWs. The SiNWs showed significant photoluminescence (PL) emission spectra with peaks lying between 380 and 670 nm. The PL intensity increases as the diameter increases and shows red shift for peaks at ∼670 nm. The increase or decrease of reflectivity is coincident with PL intensity at wavelength ∼660 nm. The x-ray diffraction patterns confirm the high crystallinity of the fabricated SiNWs. In addition, the Raman spectra showed a shift in the first order transverse band toward lower frequencies compared to that usually seen for c-Si. Finite difference time domain simulations have been performed to confirm the effect of change of diameter on the optical properties of the nanowires. The simulation results showed good agreement with the experimental results for the SiNWs of different diameters.

1.
H.
Schee
,
S.
Reich
, and
C.
Thomsen
,
Phys. Status SolidiB
242
(
12
),
2474
2479
(
2005
).
2.
S. B.
Mohamed
,
M. B.
Rabha
, and
B.
Bessais
,
Sol. Energy
94
,
277
282
(
2013
).
3.
M.
Sharma
,
S.
Kumar
,
S.
Juneja
,
A. K.
Gupta
,
S.
Sudhakar
, and
K.
Patel
,
Sol. Energy
97
,
176
185
(
2013
).
4.
S.
El-Zohary
,
M.
Shenashen
,
N. K.
Allam
,
T.
Okamoto
, and
M.
Haraguchi
,
J. Nanomater.
2013
,
568175
(
2013
).
5.
P.
Martin
,
Z.
Aksamija
,
E.
Pop
, and
U.
Ravaioli
,
Phys. Rev. Lett.
102
,
125503
(
2009
).
6.
B.
Zhang
,
H.
Wang
,
L.
Lu
,
K.
Ai
,
G.
Zhang
, and
X.
Cheng
,
Adv. Funct. Mater.
18
,
2348
2355
(
2008
).
7.
Y.
Hea
,
C.
Fanc
, and
S. T.
Lee
,
NanoToday
5
,
282
(
2010
).
8.
F.
Patolsky
,
G.
Zheng
, and
C. M.
Lieber
,
Anal. Chem.
78
,
4260
(
2006
).
9.
W.
Chern
,
K.
Hsu
,
I. S.
Chun
,
B. P.
de Azeredo
,
N.
Ahmed
,
K.-H.
Kim
,
J.-M.
Zuo
,
N.
Fang
,
P.
Ferreira
, and
X.
Li
,
Nano Lett.
10
,
1582
(
2010
).
10.
K. M.
Park
,
M. B.
Lee
,
J. W.
Shin
, and
S. Y.
Choi
,
Sol. Energy
91
,
37
47
(
2013
).
11.
J.
Jung
,
Z.
Guo
,
S.
Jee
,
H.
Um
,
K.
Park
, and
J.
Lee
,
Opt. Express
18
,
A286
A292
(
2010
).
12.
E. C.
Garnett
and
P.
Yang
,
J. Am. Chem. Soc.
130
,
9224
9225
(
2008
).
13.
M.
Khorasaninjead
,
M. A.
Swillam
,
K.
Pillai
, and
S. S.
Saini
,
Opt. Lett.
37
,
4194
4196
(
2012
).
14.
Y. H.
Tang
,
Y. F.
Zhang
,
C. S.
Lee
,
X. D.
Han
,
I.
Bello
, and
S. T.
Lee
,
Appl. Phys. Lett.
85
,
7981
(
1999
).
15.
D. D. D.
Ma
,
S. T.
Lee
, and
J.
Shinar
,
Appl. Phys. Lett.
87
,
033107
(
2005
).
16.
D. P.
Yu
,
Z. G.
Bai
,
J. J.
Wang
,
Y. H.
Zou
,
W.
Qian
,
J. S.
Fu
,
H. Z.
Zhang
,
Y.
Ding
,
G. C.
Xiong
,
L. P.
You
,
J.
Xu
, and
S. Q.
Feng
,
Phys. Rev. B
59
,
R2498
(
1999
).
17.
18.
V.
Ranjan
,
V. K.
Singh
, and
G. C.
John
,
Phys. Rev. B
58
,
1158
(
1998
);
G. C.
John
and
V. A.
Singh
,
Phys. Rep.
263
,
93
(
1995
).
19.
F.
Buda
,
J.
Kahanoff
, and
M.
Parrinello
,
Phys. Rev. Lett.
69
,
1272
(
1992
);
[PubMed]
M. S.
Hybertsen
,
Phys. Rev. Lett.
72
,
1514
(
1994
);
[PubMed]
G. D.
Sanders
and
Y. C.
Chang
,
Phys. Rev. B
45
,
9202
(
1992
).
20.
X. J.
Li
and
Y. H.
Zhang
,
Phys. Rev. B
61
,
12605
(
2000
).
21.
X.
Zhao
,
O.
Schoenfeld
,
S.
Komuro
,
Y.
Aoyagi
, and
T.
Sugano
,
Phys. Rev. B
50
,
18654
(
1994
).
22.
Y.
Kanemitsu
,
Phys. Rev. B
49
,
16845
(
1994
).
23.
N.
Wang
,
Y. F.
Zhang
,
Y. H.
Tang
,
C. S.
Lee
, and
S. T.
Lee
,
Appl. Phys. Lett.
73
,
3902
(
1998
).
24.
R. S.
Wagner
and
W. C.
Ellis
,
Appl. Phys. Lett.
4
,
89
(
1964
).
25.
Y. Y.
Wu
and
P. D.
Yang
,
J. Am. Chem. Soc.
123
,
3165
(
2001
).
26.
Z.
Zhang
,
T.
Shimizu
,
L. J.
Chen
,
S.
Senz
, and
U.
Gösele
,
Adv. Mater.
21
,
4701
(
2009
).
27.
M.
Morales
and
C. M.
Lieber
,
Science
279
,
208
(
1998
);
[PubMed]
Y. F.
Zhang
,
Y. F.
Tang
,
N.
Wang
,
C. S.
Lee
,
I.
Bello
, and
S. T.
Lee
,
Appl. Phys. Lett.
72
,
1835
(
1998
).
28.
H. Z.
Zhang
,
D. P.
Yu
,
Y.
Ding
,
Z. G.
Bai
,
Q. L.
Hang
, and
S. Q.
Feng
,
Appl. Phys. Lett.
73
,
3396
(
1998
).
29.
J. B.
Hannon
,
S.
Kodambaka
,
F. M.
Ross
, and
R. M.
Tromp
,
Nature
440
,
69
(
2006
).
30.
R.
Juhasz
,
N.
Elfstrom
, and
J.
Linnros
,
Nano Lett.
5
,
275
(
2005
).
31.
W. K.
Choi
,
T. H.
Liew
, and
M. K.
Dawood
,
Nano Lett.
8
,
3799
(
2008
).
32.
J.
de Boor
,
N.
Geyer
,
J. V.
Wittemann
,
U.
Gösele
, and
V.
Schmidt
,
Nanotechnology
21
,
095302
(
2010
).
33.
K.
Peng
,
H.
Fang
,
J.
Hu
,
Y.
Wu
,
J.
Zhu
,
Y.
Yan
, and
S. T.
Lee
,
Chem. – Eur. J.
12
,
7942
7947
(
2006
).
34.
A. G.
Nassiopoulou
,
V.
Gianneta
, and
C.
Katsogridakis
,
Nanoscale Res. Lett.
6
,
597
(
2011
).
35.
F.
Saporitia
,
R. E.
Juareza
,
F.
Audeberta
, and
M.
Boudardc
,
Mater. Sci.
16
(
3
),
655
660
(
2013
).
36.
J. M.
Pearce
,
N.
Podraza
,
R. W.
Collins
,
M. M.
Al-Jassim
,
K. M.
Jones
,
J.
Deng
, and
C. R.
Wronski
,
J. Appl. Phys.
101
(
11
),
114301
(
2007
).
37.
R.
Das
,
S. S.
Nath
,
D.
Chakdar
,
G.
Gope
, and
R.
Bhattacharjee
,
Nanotechnolgy
5
,
1
6
(
2009
).
38.
K.
Liu
,
S.
Qu
,
X.
Zhang
,
F.
Tanand
, and
Z.
Wang
,
Nanoscale Res. Lett.
8
,
88
(
2013
).
39.
S.
Jeong
,
E. C.
Garnett
,
S.
Wang
,
Z. G.
Yu
,
S. H.
Fan
,
M. L.
Brongersma
,
M. D.
McGehee
, and
Y.
Cui
, “
Hybrid silicon nanocone-polymer solar cells
,”
Nano Lett.
12
,
2971
2976
(
2012
).
40.
K. T.
Park
,
Z.
Guo
,
H. D.
Um
,
J. Y.
Jung
,
J. M.
Yang
,
S. K.
Lim
,
Y. S.
Kim
, and
J. H.
Lee
,
Opt. Express
19
,
A41
A50
(
2011
).
41.
J.
Li
,
H.
Yu
, and
Y.
Li
,
Nanotechnology
23
,
194010
(
2012
).
42.
D.
King
,
J.
Kratochvil
, and
W.
Boyson
,
Second World Conference and Exhibition on Photovoltaic Solar Energy Conversion
, 6–10 July
1998
.
43.
R. P.
Wang
,
G. W.
Zhou
,
Y. L.
Liu
,
S. H.
Pan
,
H.
Zhang
,
D. P.
Yu
, and
Z.
Zhang
,
Phys. Rev. B
61
,
24
(
2000
).
44.
G.
Popovici
,
G. Y.
Xu
,
A.
Botchkarev
,
W.
Kim
,
H.
Tang
,
A.
Salvador
, and
H.
Morkoc
,
J. Appl. Phys.
82
(
8
),
4020
(
1997
).
45.
H. Q.
Ni
,
Y. F.
Lu
,
Z. Y.
Liu
,
H.
Qiu
,
W. J.
Wang
,
Z. M.
Ren
,
S. K.
Chow
, and
Y. X.
Jie
,
Appl. Phys. Lett.
79
,
812
814
(
2001
).
46.
C. T.
Johnston
,
J.
Helsen
,
R. A.
Schoonheydt
,
D. L.
Bish
, and
S. F.
Agnew
,
Am. Geological Inst.
83
,
75
84
(
1998
).
47.
S.
Piscanec
,
A. C.
Ferrari
,
M.
Cantoro
,
S.
Hofmann
,
J. A.
Zapien
,
Y.
Lifshitz
,
S. T.
Lee
, and
J.
Robertson
,
Mater. Sci. Eng. C
23
,
931
934
(
2003
).
48.
A. K.
Panchal
and
C. S.
Solanki
,
J. Cryst. Growth
311
,
2659
2663
(
2009
).
49.
B. B.
Li
,
D. P.
Yu
, and
S. L.
Zhang
,
Phys. Rev. B
59
,
1645
(
1999
).
50.
H.
Richter
 et al.,
Solid State Commun.
39
,
625
(
1981
).
51.
I. H.
Campbell
and
P. M.
Facuchet
,
Solid State Communications
58
,
739
(
1986
).
52.
T.
Takagahara
and
K.
Takeda
,
Phys. Rev. B
46
,
15578
(
1992
).
53.
H. J.
Xu
and
X. J.
Li
,
Opt. Express
16
,
2933
2941
(
2008
).
54.
S. T.
Chu
and
S. K.
Chaudhuri
,
J. Lightwave Technol.
7
,
2033
2038
(
1989
).
55.
L.
Taskalakos
,
J.
Balch
,
J.
Fronheiser
,
M. Y.
Shih
,
S. F.
LeBoeuf
,
M.
Pietrzykowski
,
P. J.
Codella
 et al.,
J. Nanophotonics
1
,
013552
(
2007
).
You do not currently have access to this content.