In this paper, we present the dual band absorption characteristics of complementary metamaterial absorber in near infrared (1.3–2.5 μm) region. The dual band absorption is caused by two distinct resonance mechanisms—electrical resonance and cavity resonance. Electrical resonance occurs in the metal layer—top complementary metamaterial and the cavity resonance occurs in the spacer cavity formed between the top complementary metamaterial and bottom metal reflector layers. In order to elucidate the resonant mechanisms and study the effects of geometrical variations on both the resonant absorption behaviours, two sets of experiment were performed. It was seen that with increasing complementary metamaterial pattern dimension, the electrical resonance absorption peak showed a blue shift, while the cavity resonance showed a slight red shift. However, on the other hand, for the increase in spacer thickness, the cavity resonance peak showed a strong red shift, while the electrical resonance peak remained uninfluenced. The reason for these geometrical dependencies, for both resonances, is conceptually analysed. Furthermore, the design was optimized to attain single absorption band by engineering the cavity and electrical resonances to be at the same wavelength. The single absorption band was successfully realized, however, the peak wavelength showed a red shift from the electrical resonance as in dual band absorber case. The reason for the shift was further explored to be caused due to the strong coupling of electrical and cavity resonances. This approach of utilizing different resonant mechanisms for absorption at different wavelengths provides the means to achieve multiband absorbers, using a simple design and low cost fabrication process.

1.
R. A.
Shelby
,
D. R.
Smith
, and
S.
Schultz
, “
Experimental verification of a negative index of refraction
,”
Science
292
,
77
79
(
2001
).
2.
J. B.
Pendry
,
D.
Schurig
, and
D. R.
Smith
, “
Controlling electromagnetic fields
,”
Science
312
,
1780
1782
(
2006
).
3.
D.
Schurig
,
J. J.
Mock
,
B. J.
Justice
,
S. A.
Cummer
,
J. B.
Pendry
,
A. F.
Starr
, and
D. R.
Smith
, “
Metamaterial electromagnetic cloak at microwave frequencies
,”
Science
314
,
977
980
(
2006
).
4.
N.
Fang
,
H.
Lee
,
C.
Sun
, and
X.
Zhang
, “
Sub–diffraction-limited optical imaging with a silver superlens
,”
Science
308
,
534
537
(
2005
).
5.
X.
Zhang
and
Z.
Liu
, “
Superlenses to overcome the diffraction limit
,”
Nature Mater.
7
,
435
441
(
2008
).
6.
B. H.
Cheng
,
Y. C.
Lan
, and
D. P.
Tsai
, “
Breaking optical diffraction limitation using optical hybrid-super-hyperlens with radially polarized light
,”
Opt. Express
21
,
14898
14906
(
2013
).
7.
Y. T.
Wang
,
B. H.
Cheng
,
Y. Z.
Ho
,
Y. C.
Lan
,
P. G.
Luan
, and
D. P.
Tsai
, “
Gain-assisted hybrid-superlens hyperlens for nano imaging
,”
Opt. Express
20
,
22953
22960
(
2012
).
8.
N. I.
Landy
,
S.
Sajuyigbe
,
J. J.
Mock
,
D. R.
Smith
, and
W. J.
Padilla
, “
Perfect metamaterial absorber
,”
Phys. Rev. Lett.
100
,
207402
(
2008
).
9.
H.
Tao
,
N. I.
Landy
,
C. M.
Bingham
,
X.
Zhang
,
R. D.
Averitt
, and
W. J.
Padilla
, “
A metamaterial absorber for the terahertz regime: Design, fabrication, and characterization
,”
Opt. Express
16
,
7181
7188
(
2008
).
10.
N.
Liu
,
M.
Mesch
,
T.
Weiss
,
M.
Hentschel
, and
H.
Giessen
, “
Infrared perfect absorber and its application as plasmonic sensor
,”
Nano Lett.
10
,
2342
2348
(
2010
).
11.
J.
Hao
,
L.
Zhou
, and
M.
Qiu
, “
Nearly total absorption of light and heat generation by plasmonic metamaterials
,”
Phys. Rev. B
83
,
165107
(
2011
).
12.
C. M.
Watts
,
X.
Liu
, and
W. J.
Padilla
, “
Metamaterial electromagnetic wave absorbers
,”
Adv. Mater.
24
,
OP98
OP120
(
2012
).
13.
E. E.
Narimanov
and
A. V.
Kildishev
, “
Optical black hole: Broadband omnidirectional light absorber
,”
Appl. Phys. Lett.
95
,
041106
(
2009
).
14.
Q.
Cheng
,
T. J.
Cui
,
W. X.
Jiang
, and
B. G.
Cai
, “
An omnidirectional electromagnetic absorber made of metamaterials
,”
New J. Phys.
12
,
063006
(
2010
).
15.
X.
Liu
,
T.
Tyler
,
T.
Starr
,
A. F.
Starr
,
N. M.
Jokerst
, and
W. J.
Padilla
, “
Taming the blackbody with infrared metamaterials as selective thermal emitters
,”
Phys. Rev. Lett.
107
,
045901
(
2011
).
16.
J. J. A.
Mason
,
S.
Smith
, and
D.
Wasserman
, “
Strong absorption and selective thermal emission from a midinfrared metamaterial
,”
Appl. Phys. Lett.
98
,
241105
(
2011
).
17.
F.
Alves
,
B.
Kearney
,
D.
Grbovic
, and
G.
Karunasiri
, “
Narrowband terahertz emitters using metamaterial films
,”
Opt. Express
20
,
21025
21032
(
2012
).
18.
T.
Maier
and
H.
Bruckl
, “
Wavelength-tunable microbolometers with metamaterial absorbers
,”
Opt. Lett.
34
,
3012
3014
(
2009
).
19.
F. B. P.
Niesler
,
J. K.
Gansel
,
S.
Fischbach
, and
M.
Wegener
, “
Metamaterial metal-based bolometers
,”
Appl. Phys. Lett.
100
,
203508
(
2012
).
20.
F.
Alves
,
D.
Grbovic
,
B.
Kearney
, and
G.
Karunasiri
, “
Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber
,”
Opt. Lett.
37
,
1886
1888
(
2012
).
21.
D.
Shrekenhamer
,
W.
Xu
,
S.
Venkatesh
,
D.
Schurig
,
S.
Sonkusale
, and
W. J.
Padilla
, “
Experimental realization of a metamaterial detector focal plane array
,”
Phys. Rev. Lett.
109
,
177401
(
2012
).
22.
S. B.
Mbareka
,
S.
Euphrasiea
,
T.
Barona
,
L.
Thierya
,
P.
Vairaca
,
B.
Cretina
,
J. P.
Guillet
, and
L.
Chusseaub
, “
Room temperature thermopile THz sensor
,”
Sens. Actuators, A
193
,
155
160
(
2013
).
23.
Y.
Wang
,
T.
Sun
,
T.
Paudel
,
Y.
Zhang
,
Z.
Ren
, and
K.
Kempa
, “
Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells
,”
Nano Lett.
12
,
440
445
(
2012
).
24.
C.
Wu
,
B.
Neuner
 III
,
J.
John
,
A.
Milder
,
B.
Zollars
,
S.
Savoy
, and
G. J.
Shvets
, “
Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems
,”
J. Opt.
14
,
024005
(
2012
).
25.
J.
Sun
,
L.
Liu
,
G.
Dong
, and
J.
Zhou
, “
An extremely broad band metamaterial absorber based on destructive interference
,”
Opt. Express
19
,
21155
21162
(
2011
).
26.
T.
Chen
,
S.
Li
, and
H.
Sun
, “
Metamaterials application in sensing
,”
IEEE Sens. J.
12
,
2742
2765
(
2012
).
27.
H. J.
Lee
and
J. G.
Yook
, “
Biosensing using split-ring resonators at microwave regime
,”
Appl. Phys. Lett.
92
,
254103
(
2008
).
28.
K.
Jaruwongrungsee
,
W.
Withayachumnankul
,
A.
Wisitsoraat
,
D.
Abbott
,
C.
Fumeaux
, and
A.
Tuantranont
, “
Metamaterial-inspired microfluidic-based sensor for chemical discrimination
,” in
Proceedings of IEEE Sensors
(
2012
), pp.
1
4
.
29.
K.
Chen
,
R.
Adato
, and
H.
Altug
, “
Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy
,”
ACS Nano
6
,
7998
8006
(
2012
).
30.
X.
Liu
,
T.
Starr
,
A. F.
Starr
, and
W. J.
Padilla
, “
Infrared spatial and frequency selective metamaterial with near-unity absorbance
,”
Phys. Rev. Lett.
104
,
207403
(
2010
).
31.
K.
Aydin
,
V. E.
Ferry
,
R. M.
Briggs
, and
H. A.
Atwater
, “
Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers
,”
Nat. Commun.
2
,
517
(
2011
).
32.
C. W.
Cheng
,
M. N.
Abbas
,
C. W.
Chiu
,
K. T.
Lai
,
M. H.
Shih
, and
Y. C.
Chang
, “
Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays
,”
Opt. Express
20
,
10376
10381
(
2012
).
33.
B. Y.
Zhang
,
J.
Hendrickson
, and
J. P.
Guo
, “
Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures
,”
J. Opt. Soc. Am. B.
30
,
656
662
(
2013
).
34.
P.
Bouchon
,
C.
Koechlin
,
F.
Pardo
,
R.
Haïdar
, and
J. L.
Pelouard
, “
Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas
,”
Opt. Lett.
37
,
1038
1040
(
2012
).
35.
S. Q.
Chen
,
H.
Cheng
,
H. F.
Yang
,
J. J.
Li
,
X. Y.
Duan
,
C. Z.
Gu
, and
J. G.
Tian
, “
Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime
,”
Appl. Phys. Lett.
99
,
253104
(
2011
).
36.
H.
Cheng
,
S.
Chen
,
H. F.
Yang
,
J. J.
Li
,
X.
An
,
C. Z.
Gu
, and
J. G.
Tian
, “
A polarization insensitive and wide angle dual-band nearly perfect absorber in the infrared regime
,”
J. Opt.
14
,
085102
(
2012
).
37.
H. M.
Lee
and
J. C.
Wu
, “
A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array
,”
J. Phys. D: Appl. Phys.
45
,
205101
(
2012
).
38.
J.
Hendrickson
,
J.
Guo
,
B.
Zhang
,
W.
Buchwald
, and
R.
Soref
, “
Wideband perfect light absorber at midwave infrared using multiplexed metal structures
,”
Opt. Lett.
37
,
371
373
(
2012
).
39.
D.
Cheng
,
J.
Xie
,
H.
Zhang
,
C.
Wang
,
N.
Zhang
, and
L.
Deng
, “
Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum
,”
J. Opt. Soc. Am. B
29
,
1503
1510
(
2012
).
40.
N.
Zhang
,
P.
Zhou
,
D.
Cheng
,
X.
Weng
,
J.
Xie
, and
L.
Deng
, “
Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers
,”
Opt. Lett.
38
,
1125
1127
(
2013
).
41.
B.
Zhang
,
Y.
Zhao
,
Q.
Hao
,
B.
Kiraly
,
I. C.
Khoo
,
S.
Chen
, and
T. J.
Huang
, “
Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array
,”
Opt. Express
19
,
15221
15228
(
2011
).
42.
F.
Falcone
,
T.
Lopetegi
,
M. A. G.
Laso
,
J. D.
Baena
,
J.
Bonache
,
M.
Beruete
,
R.
Marques
,
F.
Martın
, and
M.
Sorolla
, “
Babinet principle applied to the design of metasurfaces and metamaterials
,”
Phys. Rev. Lett.
93
,
197401
(
2004
).
43.
H. T.
Chen
,
J. F.
O'Hara
,
A. J.
Taylor
, and
R. D.
Averitt
, “
Complementary planar terahertz metamaterials
,”
Opt. Express
15
,
1084
1095
(
2007
).
44.
C.
Rockstuhl
,
T.
Zentgraf
,
T. P.
Meyrath
,
H.
Giessen
, and
F.
Lederer
, “
Resonances in complementary metamaterials and nanoapertures
,”
Opt. Express
16
,
2080
2090
(
2008
).
45.
C.
Palego
,
J.
Deng
,
Z.
Peng
,
S.
Halder
,
J. C. M.
Hwang
,
D.
Forehand
,
D.
Scarbrough
,
C. L.
Goldsmith
,
I.
Johnston
,
S. K.
Sampath
, and
A.
Datta
, “
Robustness of RF MEMS capacitive switches with molybdenum membranes
,”
IEEE Trans. Microwave Theory Tech.
57
,
3262
(
2009
).
46.
C.
Goldsmith
,
D.
Forehand
,
D.
Scarbrough
,
I.
Johnston
,
S. K.
Sampath
,
A.
Datta
,
Z.
Peng
,
C.
Palego
, and
J. C. M.
Hwang
, “
Performance of molybdenum as a mechanical membrane for RF MEMS switches
,”
IEEE MTT-S Int. Microwave Symp. Dig.
2009
,
1229
.
47.
B.
Ni
,
X. S.
Chen
,
J. Y.
Ding
,
G. H.
Li
, and
W.
Lu
, “
Impact of resonator rotational symmetry on infrared metamaterial absorber
,” in
IEEE NUSOD
(
2013
), pp.
37
and
.
48.
J.
Kischkat
,
S.
Peters
,
B.
Gruska
,
M.
Semtsiv
,
M.
Chashnikova
,
M.
Klinkmüller
,
O.
Fedosenko
,
S.
Machulik
,
A.
Aleksandrova
,
G.
Monastyrskyi
,
Y.
Flores
, and
W. T.
Masselink
, “
Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride
,”
Appl. Opt.
51
,
6789
6798
(
2012
).
49.
M. A.
Ordal
,
R. J.
Bell
,
R. W.
Alexander
,
L. L.
Long
, Jr.
, and
M. R.
Querry
, “
Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W
,”
Appl. Opt.
24
,
4493
4499
(
1985
).
50.
J.
Zhou
,
E. N.
Economon
,
T.
Koschny
, and
C. M.
Soukoulis
, “
Unifying approach to left-handed material design
,”
Opt. Lett.
31
,
3620
3622
(
2006
).
51.
J.
Zhou
,
T.
Koschny
, and
C. M.
Soukoulis
, “
An efficient way to reduce losses of left-handed metamaterials
,”
Opt. Express
16
,
11147
11152
(
2008
).
52.
Y.
Pang
,
H.
Cheng
,
Y.
Zhou
, and
J.
Wang
, “
Analysis and design of wire-based metamaterial absorbers using equivalent circuit approach
,”
J. Appl. Phys.
113
,
114902
(
2013
).
53.
H. T.
Chen
, “
Interference theory of metamaterial perfect absorbers
,”
Opt. Express
20
,
7165
7172
(
2012
).
54.
H. T.
Chen
,
J.
Zhou
,
J. F.
O'Hara
,
F.
Chen
,
A. K.
Azad
, and
A. J.
Taylor
, “
Antireflection coating using metamaterials and identification of its mechanism
,”
Phys. Rev. Lett.
105
,
073901
(
2010
).
55.
C.
Hu
,
Z.
Zhao
,
X.
Chen
, and
X.
Luo
, “
Realizing near-perfect absorption at visible frequencies
,”
Opt. Express
17
,
11039
11044
(
2009
).
56.
H. Y.
Zheng
,
X. R.
Jin
,
J. W.
Park
,
Y. H.
Lu
,
J. Y.
Rhee
,
W. H.
Jang
,
H.
Cheong
, and
Y. P.
Lee
, “
Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance
,”
Opt. Express
20
,
24002
24009
(
2012
).
57.
Z.
Liu
,
C.-Y.
Huang
,
H.
Liu
,
X.
Zhang
, and
C.
Lee
, “
Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces
,”
Optics Express
21
,
6519
6525
(
2013
).
58.
Y.-S.
Lin
,
F.
Ma
, and
C.
Lee
, “
Three-dimensional movable metamaterials using electric split-ring resonators
,”
Opt. Lett.
38
,
3126
3128
(
2013
).
59.
Y.-S.
Lin
,
Y.
Qian
,
F.
Ma
,
Z.
Liu
,
P.
Kropelnicki
, and
C.
Lee
, “
Development of stress-induced curved actuators for a tunable THz filter based on double split ring resonators
,”
Appl. Phys. Lett.
102
,
111908
(
2013
).
60.
F.
Ma
,
Y.
Qian
,
Y.-S.
Lin
,
H.
Liu
,
X.
Zhang
,
Z.
Liu
,
J. M.-L.
Tsai
, and
C.
Lee
, “
Polarization-sensitive microelectromechanical systems based tunable terahertz metamaterials using three dimensional electric split-ring resonator arrays
,”
Appl. Phys. Lett.
102
,
161912
(
2013
).
61.
C. P.
Ho
,
P.
Pitchappa
,
P.
Kropelnicki
,
J.
Wang
,
Y.
Gu
, and
C.
Lee
, “
Development of polycrystalline silicon based photonic crystal membrane for mid-infrared applications
,”
IEEE J. Sel. Top. Quantum Electron.
20
,
4900107
(
2014
).
You do not currently have access to this content.