In an effort to explore the effect of substitution Fe by Cr in NaZn13-type La0.7Pr0.3Fe11.4−xCrxSi1.6 (x = 0, 0.06, 0.12, 0.26, and 0.34) compounds, the structure and magnetic properties have been investigated by high intensity of x-ray and neutron diffraction, scanning electron microscopy, specific heat, and magnetization measurement. It has been found that a substitution of Cr for Fe in this compounds leads to decrease in the lattice parameter a at room temperature but variation on Curie temperature (TC). While the first order nature of magnetic phase transition around TC does not change with increasing Cr content up to x = 0.34. High intensity x-ray and neutron diffraction study at variable temperatures for highest Cr concentration x = 0.34 confirmed the presence of strong magneto-volume effect around TC and indicated the direct evident of coexistence across magnetic transition as characteristic of first order nature. The values of −ΔSM around TC decrease from 17 J kg−1 K−1 for x = 0 to 12 J kg−1 K−1 for x = 0.06 and then increases with further increasing Cr content up to 17.5 J kg−1 K−1 for x = 0.34 under a change of 0–5 T magnetic field. Similar behavior on relative cooling power which is decrease from 390 J kg−1 for x = 0 to 365 J kg−1 for x = 0.06 at the beginning and then increases up to 400 J kg−1 for x = 0.34. From the point of this view with the highest Cr concentration (x = 0.34) exhibits favourable material candidate for magnetic refrigerator application therefore should inspire further study concerning on higher Cr concentration in this compound.

1.
B. G.
Shen
 et al.,
Adv. Mater.
21
,
4545
(
2009
).
2.
B.
Ekkes
,
J. Phys. D: Appl. Phys.
38
,
R381
(
2005
).
3.
X. X.
Zhang
 et al.,
Appl. Phys. Lett.
77
,
3072
(
2000
).
4.
J.
Shen
 et al.,
J. Magn. Magn. Mater.
321
,
2336
(
2009
).
5.
S.
Fujieda
 et al.,
J. Magn. Magn. Mater.
321
,
3567
(
2009
).
6.
M.
Balli
 et al.,
J. Magn. Magn. Mater.
313
,
43
(
2007
).
7.
L.
Jia
 et al.,
Appl. Phys. Lett.
92
,
182503
(
2008
).
8.
Y. L. H.
Zhanga
 et al.,
J. Alloys Compd.
509
,
3746
(
2011
).
9.
M.
Balli
 et al.,
J. Magn. Magn. Mater.
321
,
123
(
2009
).
10.
P.
Shamba
 et al.,
J. Appl. Phys.
109
,
07A940
(
2011
).
11.
A. K.
Pathak
 et al.,
J. Magn. Magn. Mater.
322
,
692
(
2010
).
12.
M. F.
Md Din
 et al.,
Intermetallics
36
,
1
(
2013
).
13.
B. L.
Xu
 et al.,
J. Phys.: Condens. Matter
15
,
7385
(
2003
).
14.
A.
Fujita
and
H.
Yako
,
Scr. Mater.
67
,
578
(
2012
).
15.
M. F.
Md Din
 et al.,
J. Phys. D: Appl. Phys.
46
,
445002
(
2013
).
16.
L.
Gelato
,
J. Appl. Crystallogr.
14
,
151
(
1981
).
17.
X.
Chen
 et al.,
J. Alloys Compd.
509
,
8534
(
2011
).
18.
M. F.
Md Din
 et al.,
Appl. Phys. Lett.
104
,
042401
(
2014
).
19.
F.-X.
Hu
 et al.,
J. Phys.: Condens. Matter
12
,
L691
(
2003
).
20.
A.
Fujita
 et al.,
J. Magn. Magn. Mater.
310
,
e1006
(
2007
).
21.
F. W.
Wang
 et al.,
J. Phys.: Condens. Matter
15
,
5269
(
2003
).
22.
K. A.
Gschneidner
, Jr.
 et al.,
Scr. Mater.
67
,
572
(
2012
).
You do not currently have access to this content.