In this work, we demonstrate that the magnetocaloric response of FeRh-based compounds may be tailored for potential magnetic refrigeration applications by chemical modification of the FeRh lattice. Alloys of composition Fe(Rh1−xAx) or (Fe1−xBx)Rh (A = Cu, Pd; B = Ni; 0 < x < 0.06) were synthesized via arc-melting and subsequent annealing in vacuum at 1000 °C for 48 h. The magnetocaloric properties of the FeRh-based systems were determined using isothermal M(H) curves measured in the vicinity of the magnetostructural temperature (Tt). It is found that the FeRh working temperature range (δTFWHM) may be chemically tuned over a wide temperature range, 100 K ≤ T ≤ 400 K. While elemental substitution consistently decreases the magnetic entropy change (ΔSmag) of the FeRh-based ternary alloys from that of the parent FeRh compound (ΔSmag,FeRh ∼ 17 J/kg K; ΔSmag,FeRh-ternary = 7–14 J/kg K at Happ = 2 T), the net refrigeration capacity (RC), defined as the amount of heat that can be transferred during one magnetic refrigeration cycle, of the modified systems is significantly higher (RCFeRh ∼ 150 J/kg; RCFeRh-ternary = 170–210 J/kg at Happ = 2 T). These results are attributed to stoichiometry-induced changes in the FeRh electronic band structure and beneficial broadening of the magnetostructural transition due to local chemical disorder.

1.
J. S.
Kouvel
,
J. Appl. Phys.
37
,
1257
(
1966
).
2.
M.
Manekar
and
S. B.
Roy
,
J. Phys. D: Appl. Phys.
41
,
192004
(
2008
).
3.
M. P.
Annaorazov
 et al.,
Cryogenics
32
(
10
),
867
872
(
1992
).
4.
S. A.
Nikitin
 et al.,
Phys. Lett. A
148
(
6–7
),
363
366
(
1990
).
5.
V. K.
Pecharsky
and
J. K. A.
Gschneidner
,
Phys. Rev. Lett.
78
(
23
),
4494
4497
(
1997
).
6.
R.
Barua
 et al.,
Appl. Phys. Lett.
103
,
102407
(
2013
).
7.
K.
Nishimura
 et al.,
Mater. Trans.
49
(
8
),
1753
1756
(
2008
).
8.
M.
Manekar
and
S. B.
Roy
,
J. Phys. D: Appl. Phys.
44
,
242001
(
2011
).
9.
S.
Maat
 et al.,
Phys. Rev. B
72
,
214432
(
2005
).
10.
V.
Franco
 et al.,
Annu. Rev. Mater. Res.
42
,
305
342
(
2012
).
11.
Y.
Imry
and
M.
Wortis
,
Phys. Rev. B
19
(
7
),
3580
3585
(
1979
).
12.
Podmiljsak
 et al.,
J. Appl. Phys.
105
,
07A941
(
2009
).
13.
J. B. A.
Hamer
 et al.,
J. Magn. Magn. Mater.
321
(
21
),
3535
3540
(
2009
).
14.
S. B.
Roy
, et al.,
Acta Mater.
56
(
20
),
5895
(
2008
).
15.
P.
Kushwaha
 et al.,
J. Phys.: Condens. Matter
24
,
096005
(
2012
).
16.
L.
Tocado
 et al.,
J. Appl. Phys.
105
(
9
),
093918
(
2009
).
17.
A. M. G.
Carvalho
 et al.,
J. Alloys Compd.
509
(
8
),
3452
3456
(
2011
).
18.
M. P.
Annaorazov
 et al.,
J. Alloys Compd.
397
(
1–2
),
26
30
(
2005
).
You do not currently have access to this content.