With progressively improving charge carrier mobility in organic semiconductors and miniaturization of organic field-effect transistors (OFETs), low contact resistances become ever more important. To study the capabilities of metal electrodes in OFETs and to explore the transition from contact-limited to channel-dominated transistor operation, we used flip-crystal FETs with gold electrodes having different contact resistances Rc to high-quality rubrene crystals. 4-terminal transfer and output measurements reveal that Rc decreases from 105–106 Ω cm for 15 min air exposure to 3 × 103 Ωcm for at least 5 h air exposure of the gold electrodes before the flip-crystal FET is assembled. We conclude the reduction of Rc to be caused by a growing contamination layer on the gold electrodes that weakens the electrostatic coupling between rubrene crystal and gold electrode, and lowers the Schottky contact diode parameter V0. In channel-dominated (low Rc) FETs, the mobility is in the range of 10–17 cm2/(Vs); in contrast, in contact-limited (high Rc) FETs, the apparent mobility decreases significantly with increasing contact resistance. The apparent μ – Rc dependence is not intrinsic, but rather the result of incorrect assumptions of the potential and the charge carrier density in the channel region. Thus, the development of high-mobility organic semiconductors requires further efforts to improve contacts beyond traditional metal electrodes.

1.
The Molecule–Metal Interface
, edited by
N.
Koch
,
N.
Ueno
, and
A.
Wee
(
Wiley-VCH
,
2013
).
2.
L.
Burgi
,
T. J.
Richards
,
R. H.
Friend
, and
H.
Sirringhaus
, “
Close look at charge carrier injection in polymer field-effect transistors
,”
J. Appl. Phys.
94
,
6129
(
2003
).
3.
E. J.
Meijer
,
G. H.
Gelinck
,
E.
van Veenendaal
,
B.-H.
Huisman
,
D. M.
de Leeuw
, and
T. M.
Klapwijk
, “
Scaling behavior and parasitic series resistance in disordered organic field-effect transistors
,”
Appl. Phys. Lett.
82
,
4576
(
2003
).
4.
B. H.
Hamadani
and
D.
Natelson
, “
Temperature-dependent contact resistances in high-quality polymer field-effect transistors
,”
Appl. Phys. Lett.
84
,
443
(
2004
).
5.
M.
Caironi
,
C.
Newman
,
J. R.
Moore
,
D.
Natali
,
H.
Yan
,
A.
Facchetti
, and
H.
Sirringhaus
, “
Efficient charge injection from a high work function metal in high mobility n-type polymer field-effect transistors
,”
Appl. Phys. Lett.
96
,
183303
(
2010
).
6.
R. A.
Street
and
A.
Salleo
, “
Contact effects in polymer transistors
,”
Appl. Phys. Lett.
81
,
2887
(
2002
).
7.
A.
Herasimovich
,
S.
Scheinert
, and
I.
Horselmann
, “
Influence of traps on top and bottom contact field-effect transistors based on modified poly(phenylene-vinylene)
,”
J. Appl. Phys.
102
,
054509
(
2007
).
8.
O.
Simonetti
,
L.
Giraudet
,
T.
Maurel
,
J.-L.
Nicolas
, and
A.
Belkhir
, “
Organic transistor model with nonlinear injection: Effects of uneven source contact on apparent mobility and threshold voltage
,”
Org. Electron.
11
,
1381
1393
(
2010
).
9.
T. J.
Richards
and
H.
Sirringhaus
, “
Analysis of the contact resistance in staggered, top-gate organic field-effect transistors
,”
J. Appl. Phys.
102
,
094510
(
2007
).
10.
B. H.
Hamadani
and
D.
Natelson
, “
Nonlinear charge injection in organic field-effect transistors
,”
J. Appl. Phys.
97
,
064508
(
2005
).
11.
P. V.
Pesavento
,
R. J.
Chesterfield
,
C. R.
Newman
, and
C. D.
Frisbie
, “
Gated four-probe measurements on pentacene thin-film transistors: Contact resistance as a function of gate voltage and temperature
,”
J. Appl. Phys.
96
,
7312
(
2004
).
12.
J. A.
Nichols
,
D. J.
Gundlach
, and
T. N.
Jackson
, “
Potential imaging of pentacene organic thin-film transistors
,”
Appl. Phys. Lett.
83
,
2366
(
2003
).
13.
R. J.
Chesterfield
,
J. C.
McKeen
,
C. R.
Newman
,
C. D.
Frisbie
,
P. C.
Ewbank
,
K. R.
Mann
, and
L. L.
Miller
, “
Variable temperature film and contact resistance measurements on operating n-channel organic thin film transistors
,”
J. Appl. Phys.
95
,
6396
6405
(
2004
).
14.
P. V.
Necliudov
,
M. S.
Shur
,
D. J.
Gundlach
, and
T. N.
Jackson
, “
Contact resistance extraction in pentacene thin film transistors
,”
Solid-State Electron.
47
,
259
262
(
2003
).
15.
K. P.
Puntambekar
,
P. V.
Pesavento
, and
C. D.
Frisbie
, “
Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe force microscopy
,”
Appl. Phys. Lett.
83
,
5539
(
2003
).
16.
F.
Ante
,
D.
Kälblein
,
T.
Zaki
,
U.
Zschieschang
,
K.
Takimiya
,
M.
Ikeda
,
T.
Sekitani
,
T.
Someya
,
J. N.
Burghartz
,
K.
Kern
, and
H.
Klauk
, “
Contact resistance and megahertz operation of aggressively scaled organic transistors
,”
Small
8
,
73
79
(
2012
).
17.
D. J.
Gundlach
,
L.
Zhou
,
J. A.
Nichols
,
T. N.
Jackson
,
P. V.
Necliudov
, and
M. S.
Shur
, “
An experimental study of contact effects in organic thin film transistors
,”
J. Appl. Phys.
100
,
024509
(
2006
).
18.
M.
Kano
,
T.
Minari
, and
K.
Tsukagoshi
, “
Improvement of subthreshold current transport by contact interface modification in p-type organic field-effect transistors
,”
Appl. Phys. Lett.
94
,
143304
(
2009
).
19.
J.
Zaumseil
,
K. W.
Baldwin
, and
J. A.
Rogers
, “
Contact resistance in organic transistors that use source and drain electrodes formed by soft contact lamination
,”
J. Appl. Phys.
93
,
6117
(
2003
).
20.
C.
Bock
,
D. V.
Pham
,
U.
Kunze
,
D.
Kafer
,
G.
Witte
, and
C.
Woll
, “
Improved morphology and charge carrier injection in pentacene field-effect transistors with thiol-treated electrodes
,”
J. Appl. Phys.
100
,
114517
(
2006
).
21.
B.
Stadlober
,
U.
Haas
,
H.
Gold
,
A.
Haase
,
G.
Jakopic
,
G.
Leising
,
N.
Koch
,
S.
Rentenberger
, and
E.
Zojer
, “
Orders-of-magnitude reduction of the contact resistance in short-channel hot embossed organic thin film transistors by oxidative treatment of Au-electrodes
,”
Adv. Funct. Mater.
17
,
2687
2692
(
2007
).
22.
M.
Gruber
,
E.
Zojer
,
F.
Schürrer
, and
K.
Zojer
, “
Impact of materials versus geometric parameters on the contact resistance in organic thin-film transistors
,”
Adv. Funct. Mater.
23
,
2941
2952
(
2013
).
23.
J.
Takeya
,
C.
Goldmann
,
S.
Haas
,
K. P.
Pernstrich
,
B.
Ketterer
, and
B.
Batlogg
, “
Field-induced charge transport at the surface of pentacene single crystals: A method to study charge dynamics of two-dimensional electron systems in organic crystals
,”
J. Appl. Phys.
94
,
5800
5804
(
2003
).
24.
M.
Uno
,
T.
Uemura
,
Y.
Kanaoka
,
Z.
Chen
,
A.
Facchetti
, and
J.
Takeya
, “
High-speed organic single-crystal transistors gated with short-channel air gaps: Efficient hole and electron injection in organic semiconductor crystals
,”
Org. Electron.
14
,
1656
1662
(
2013
).
25.
C.
Reese
and
Z.
Bao
, “
Detailed characterization of contact resistance, gate-bias-dependent field-effect mobility, and short-channel effects with microscale elastomeric single-crystal field-effect transistors
,”
Adv. Funct. Mater.
19
,
763
771
(
2009
).
26.
T.
Takenobu
,
T.
Takahashi
,
J.
Takeya
, and
Y.
Iwasa
, “
Effect of metal electrodes on rubrene single-crystal transistors
,”
Appl. Phys. Lett.
90
,
013507
(
2007
).
27.
C.
Goldmann
,
S.
Haas
,
C.
Krellner
,
K. P.
Pernstich
,
D. J.
Gundlach
, and
B.
Batlogg
, “
Hole mobility in organic single crystals measured by a flip-crystal field-effect technique
,”
J. Appl. Phys.
96
,
2080
2086
(
2004
).
28.
I. N.
Hulea
,
S.
Russo
,
A.
Molinari
, and
A. F.
Morpurgo
, “
Reproducible low contact resistance in rubrene single-crystal field-effect transistors with nickel electrodes
,”
Appl. Phys. Lett.
88
,
113512
(
2006
).
29.
A.
Molinari
,
I.
Gutierrez
,
I. N.
Hulea
,
S.
Russo
, and
A. F.
Morpurgo
, “
Bias-dependent contact resistance in rubrene single-crystal field-effect transistors
,”
Appl. Phys. Lett.
90
,
212103
(
2007
).
30.
A. S.
Molinari
,
I.
Gutierrez Lezama
,
P.
Parisse
,
T.
Takenobu
,
Y.
Iwasa
, and
a. F.
Morpurgo
, “
Quantitative analysis of electronic transport through weakly coupled metal/organic interfaces
,”
Appl. Phys. Lett.
92
,
133303
(
2008
).
31.
S.
Jenatsch
, “
Contact modification by self-assembling monolayers in organic single crystal fileld-effect transistors
,” Master thesis (
ETH Zurich
,
2013
).
32.
A.
Wan
,
J.
Hwang
,
F.
Amy
, and
A.
Kahn
, “
Impact of electrode contamination on the α-NPD/Au hole injection barrier
,”
Org. Electron.
6
,
47
54
(
2005
).
33.
M.
Grobosch
and
M.
Knupfer
, “
Charge-injection barriers at realistic metal/organic interfaces: Metals become faceless
,”
Adv. Mater.
19
,
754
756
(
2007
).
34.
M.
Grobosch
and
M.
Knupfer
, “
Electronic properties of the interface between the organic semiconductor α-sexithiophene and polycrystalline palladium
,”
Org. Electron.
9
,
767
774
(
2008
).
35.
R. W. I.
de Boer
,
M. E.
Gershenson
,
A. F.
Morpurgo
, and
V.
Podzorov
, “
Organic single-crystal field-effect transistors
,”
Phys. Status Solidi A
201
,
1302
1331
(
2004
).
36.
W. L.
Kalb
,
T.
Mathis
,
S.
Haas
,
A. F.
Stassen
, and
B.
Batlogg
, “
Organic small molecule field-effect transistors with Cytop gate dielectric: Eliminating gate bias stress effects
,”
Appl. Phys. Lett.
90
,
092104
(
2007
).
37.
M. P.
Walser
,
W. L.
Kalb
,
T.
Mathis
,
T. J.
Brenner
, and
B.
Batlogg
, “
Stable complementary inverters with organic field-effect transistors on Cytop fluoropolymer gate dielectric
,”
Appl. Phys. Lett.
94
,
053303
(
2009
).
38.
C.
Kloc
,
P. G.
Simpkins
,
T.
Siegrist
, and
R. A.
Laudise
, “
Physical vapor growth of centimeter-sized crystals of α-hexathiophene
,”
J. Cryst. Growth
182
,
416
427
(
1997
).
39.
R. A.
Laudise
,
C.
Kloc
,
P. G.
Simpkins
, and
T.
Siegrist
, “
Physical vapor growth of organic semiconductors
,”
J. Cryst. Growth
187
,
449
454
(
1998
).
40.
L. B.
Valdes
, “
Resistivity measurements on germanium for transistors
,”
Proc. IRE
42
,
420
427
(
1954
).
41.
C.
Chen
and
J.
Kanicki
, “
Gated-four-probe a-Si:H TFT structure: A new technique to measure the intrinsic performance of a-Si:H TFT
,”
IEEE Electron Device Lett.
18
,
340
342
(
1997
).
42.
Organic Electronics
, edited by
H.
Klauk
(
WILEY-VCH Verlag GmbH & Co. KGaA
,
2006
).
43.
T.
Li
,
P. P.
Ruden
,
I. H.
Campbell
, and
D. L.
Smith
, “
Investigation of bottom-contact organic field effect transistors by two-dimensional device modeling
,”
J. Appl. Phys.
93
,
4017
(
2003
).
44.
A.
Rolland
,
J.
Richard
,
J. P.
Kleider
, and
D.
Mencaraglia
, “
Electrical properties of amorphous silicon transistors and MISdevices: Comparative study of top nitride and bottom nitride configurations
,”
J. Electrochem. Soc.
140
,
3679
3683
(
1993
).
45.
B.
Blülle
,
R.
Häusermann
, and
B.
Batlogg
, “Approaching the trap-free limit in organic single-crystal field-effect transistors,” PRApplied (to be published).
46.
M.
Shur
,
Physics of Semiconductor Devices
(
Prentice Hall
,
1990
).
47.
N.
Koch
, “
Organic electronic devices and their functional interfaces
,”
Chem. Phys. Chem.
8
,
1438
1455
(
2007
).
48.
S.
Rentenberger
,
a.
Vollmer
,
E.
Zojer
,
R.
Schennach
, and
N.
Koch
, “
UVozone treated Au for air-stable, low hole injection barrier electrodes in organic electronics
,”
J. Appl. Phys.
100
,
053701
(
2006
).
49.
V.
Heine
, “
Theory of surface states
,”
Phys. Rev.
138
,
A1689
A1696
(
1965
).
50.
W.
Mönch
, “
Metal-semiconductor contacts: Electronic properties
,”
Surf. Sci.
299–300
,
928
944
(
1994
).
51.
H.
Vázquez
,
F.
Flores
,
R.
Oszwaldowski
,
J.
Ortega
,
R.
Pérez
, and
A.
Kahn
, “
Barrier formation at metalorganic interfaces: Dipole formation and the charge neutrality level
,”
Appl. Surf. Sci.
234
,
107
112
(
2004
).
52.
H.
Vazquez
,
F.
Flores
, and
A.
Kahn
, “
Induced Density of states model for weakly interacting organic semiconductor interfaces
,”
Org. Electron.
8
,
241
248
(
2007
).
53.
J.
Frisch
,
A.
Vollmer
,
J. P.
Rabe
, and
N.
Koch
, “
Ultrathin polythiophene films on an intrinsically conducting polymer electrode: Charge transfer induced valence states and interface dipoles
,”
Org. Electron.
12
,
916
922
(
2011
).
54.
O. D.
Jurchescu
,
J.
Baas
, and
T. T. M.
Palstra
, “
Electronic transport properties of pentacene single crystals upon exposure to air
,”
Appl. Phys. Lett.
87
,
052102
(
2005
).
55.
S.
Braun
,
W. R.
Salaneck
, and
M.
Fahlman
, “
Energy-level alignment at organic/metal and organic/organic interfaces
,”
Adv. Mater.
21
,
1450
1472
(
2009
).
56.
For highly crystalline organic materials showing band–like transport, HOMO and LUMO levels are the relevant energies to predict interface energy alignment. This is given for high mobility rubrene crystals used in this study.
57.
J.
Hwang
,
A.
Wan
, and
A.
Kahn
, “
Energetics of metalorganic interfaces: New experiments and assessment of the field
,”
Mater. Sci. Eng.: R
64
,
1
31
(
2009
).
58.
Y.
Nakayama
,
J.
Niederhausen
,
S.
Machida
,
Y.
Uragami
,
H.
Kinjo
,
A.
Vollmer
,
J.
Rabe
,
N.
Koch
, and
H.
Ishii
, “
Valence band structure of rubrene single crystals in contact with an organic gate dielectric
,”
Org. Electron.
14
,
1825
1832
(
2013
).
59.
Y.
Nakayama
,
Y.
Uragami
,
S.
Machida
,
K.
Koswattage
,
D.
Yoshimura
,
H.
Setoyama
,
T.
Okajima
,
K.
Mase
, and
H.
Ishii
, “
Full picture of valence band structure of rubrene single crystals probed by angle-resolved and excitation-energy-dependent photoelectron spectroscopy
,”
Appl. Phys. Express
5
,
111601
(
2012
).
60.
E.
Mitchell
and
J.
Mitchell
, “
The work functions of copper, silver and aluminium
,”
Proc. R. Soc. A
210
,
70
84
(
1951
).
61.
W.
Li
and
D.
Li
, “
On the correlation between surface roughness and work function in copper
,”
J. Chem. Phys.
122
,
064708
(
2005
).
62.
M. T.
Greiner
and
Z.-H.
Lu
, “
Thin-film metal oxides in organic semiconductor devices: Their electronic structures, work functions and interfaces
,”
NPG Asia Mater.
5
,
e55
(
2013
).
63.
G. B.
Murdoch
,
M.
Greiner
,
M. G.
Helander
,
Z. B.
Wang
, and
Z. H.
Lu
, “
A comparison of CuO and Cu[sub 2]O hole-injection layers for low voltage organic devices
,”
Appl. Phys. Lett.
93
,
083309
(
2008
).
64.
I.
Polishchuk
,
P.
Ranade
,
T.
King
, and
C.
Hu
, “
Dual work function metal gate CMOS technology using metal interdiffusion
,”
Electron Device Lett.
22
,
444
446
(
2001
).
65.
M. T.
Greiner
M. G.
Helander
,
Z.-B.
Wang
,
W.-M.
Tang
, and
Z.-H.
Lu
,
J. Phys. Chem. C
114
(46),
19777
19781
(
2010
).
66.
P.
Keil
,
D.
Lutzenkirchen-Hecht
, and
R.
Frahm
, “
Investigation of room temperature oxidation of Cu in air by yoneda-XAFS
,”
AIP Conf. Proc.
882
,
490
(
2007
).
67.
R.
Tung
, “
The physics and chemistry of the Schottky barrier height
,”
Appl. Phys. Rev.
1
,
011304
(
2014
).
68.
K.
Shibata
,
H.
Wada
,
K.
Ishikawa
,
H.
Takezoe
, and
T.
Mori
, “
(Tetrathiafulvalene)(tetracyanoquinodimethane) as a low-contact-resistance electrode for organic transistors
,”
Appl. Phys. Lett.
90
,
193509
(
2007
).
69.
T.
Matsumoto
,
W.
Ou-Yang
,
K.
Miyake
,
T.
Uemura
, and
J.
Takeya
, “
Study of contact resistance of high-mobility organic transistors through comparisons
,”
Org. Electron.
14
,
2590
2595
(
2013
).
You do not currently have access to this content.