Recently, nanoglass (NG) was found to exhibit a surprising homogeneous superplastic deformation behavior. However, how the presence of notch affects its mechanical properties remains unexplored. Here, we perform molecular dynamics simulations on a superplastic Cu50Zr50 NG containing a pre-existing notch under tensile loading, with focus on the notch sensitivity. Our results show that when the notch size is smaller than or comparable to the average grain size (d), the NG still exhibits a superplastic deformation and shows notch-insensitivity. When the notch size is larger than d, however, the NG fails by localized shear banding emanating from the notch root and shows notch-sensitivity. The origin of this transition arises from the competition between the shear band nucleation induced by the stress concentration at the notch root and the growth of shear transformation zones distributed in the glass-glass interfaces. Our results provide useful guidelines for the design and engineering of NG with notch for structural applications.

1.
R. T.
Qu
,
M.
Calin
,
J.
Eckert
, and
Z. F.
Zhang
,
Scr. Mater.
66
,
733
736
(
2012
).
2.
R. T.
Qu
,
J. X.
Zhao
,
M.
Stoica
,
J.
Eckert
, and
Z. F.
Zhang
,
Mater. Sci. Eng. A
534
,
365
373
(
2012
).
3.
S.
Kumar
,
M. A.
Haque
, and
H.
Gao
,
Appl. Phys. Lett.
94
,
253104
(
2009
).
4.
S.
Kumar
,
X. Y.
Li
,
A.
Haque
, and
H. J.
Gao
,
Nano Lett.
11
,
2510
2516
(
2011
).
5.
T.
Zhang
,
X. Y.
Li
,
S.
Kadkhodaei
, and
H. J.
Gao
,
Nano Lett.
12
,
4605
4610
(
2012
).
6.
R.
Khare
,
S. L.
Mielke
,
J. T.
Paci
,
S. L.
Zhang
,
R.
Ballarini
,
G. C.
Schatz
, and
T.
Belytschko
,
Phys. Rev. B
75
,
075412
(
2007
).
7.
H. M.
Li
,
G. F.
Wang
, and
T. J.
Wang
,
Int. J. Solids Struct.
45
,
1087
1100
(
2008
).
8.
Z. D.
Sha
,
Q. X.
Pei
,
V.
Sorkin
,
P. S.
Branicio
,
Y. W.
Zhang
, and
H.
Gao
,
Appl. Phys. Lett.
103
,
081903
(
2013
).
9.
G. F.
Wang
and
T. J.
Wang
,
Appl. Phys. Lett.
89
,
161901
(
2006
).
10.
J. X.
Fang
,
U.
Vainio
,
W.
Puff
,
R.
Wuerschum
,
X. L.
Wang
,
D.
Wang
,
M.
Ghafari
,
F.
Jiang
,
J.
Sun
,
H.
Hahn
, and
H.
Gleiter
,
Nano Lett.
12
,
458
463
(
2012
).
11.
H.
Gleiter
,
Beilstein J. Nanotechnol.
4
,
517
533
(
2013
).
12.
D.
Sopu
,
Y.
Ritter
,
H.
Gleiter
, and
K.
Albe
,
Phys. Rev. B
83
,
100202
(
2011
).
13.
K.
Albe
,
Y.
Ritter
, and
D.
Sopu
,
Mech. Mater.
67
,
94
(
2013
).
14.
H.
Gleiter
,
Acta. Mater.
56
,
5875
5893
(
2008
).
15.
Y.
Ritter
,
D.
Sopu
,
H.
Gleiter
, and
K.
Albe
,
Acta. Mater.
59
,
6588
6593
(
2011
).
16.
S.
Adibi
,
Z. D.
Sha
,
P. S.
Branicio
,
S. P.
Joshi
,
Z. S.
Liu
, and
Y. W.
Zhang
,
Appl. Phys. Lett.
103
,
211905
(
2013
).
17.
D.
Sopu
,
K.
Albe
,
Y.
Ritter
, and
H.
Gleiter
,
Appl. Phys. Lett.
94
,
191911
(
2009
).
18.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
19
(
1995
).
19.
Y. Q.
Cheng
,
A. J.
Cao
,
H. W.
Sheng
, and
E.
Ma
,
Acta. Mater.
56
,
5263
5275
(
2008
).
20.
A. J.
Cao
,
Y. Q.
Cheng
, and
E.
Ma
,
Acta. Mater.
57
,
5146
5155
(
2009
).
21.
Y. Q.
Cheng
,
A. J.
Cao
, and
E.
Ma
,
Acta. Mater.
57
,
3253
3267
(
2009
).
22.
Z. D.
Sha
,
Y. P.
Feng
, and
Y.
Li
,
Appl. Phys. Lett.
96
,
061903
(
2010
).
23.
Z. D.
Sha
,
R. Q.
Wu
,
Y. H.
Lu
,
L.
Shen
,
M.
Yang
,
Y. Q.
Cai
,
Y. P.
Feng
, and
Y.
Li
,
J. Appl. Phys.
105
,
043521
(
2009
).
24.
Z. D.
Sha
,
B.
Xu
,
L.
Shen
,
A. H.
Zhang
,
Y. P.
Feng
, and
Y.
Li
,
J. Appl. Phys.
107
,
063508
(
2010
).
25.
Z. D.
Sha
,
Y. P.
Feng
, and
Y.
Li
,
Mater. Chem. Phys.
127
,
292
295
(
2011
).
26.
A. J.
Cao
and
Y. G.
Wei
,
Phys. Rev. B
76
,
024113
(
2007
).
27.
J.
Li
,
Modell. Simul. Mater. Sci. Eng.
11
,
173
177
(
2003
).
28.
Q. K.
Li
and
M.
Li
,
Appl. Phys. Lett.
91
,
231905
(
2007
).
29.
F.
Shimizu
,
S.
Ogata
, and
J.
Li
,
Mater. Trans.
48
,
2923
2927
(
2007
).
30.
C. E.
Packard
and
C. A.
Schuh
,
Acta. Mater.
55
,
5348
5358
(
2007
).
31.
P.
Murali
,
Y. W.
Zhang
, and
H.
Gao
,
Appl. Phys. Lett.
100
,
201901
(
2012
).
You do not currently have access to this content.