We report an experimental study of terahertz quantum cascade lasers with variable barrier heights based on the AlxGa1–xAs/GaAs material system. Two new designs are developed based on semiclassical ensemble Monte Carlo simulations using state-of-the-art Al0.15Ga0.85As/GaAs three-quantum-well resonant phonon depopulation active region design as a reference. The new designs achieved maximum lasing temperatures of 188 K and 172 K, as compared to the maximum lasing temperature of 191 K for the reference structure. These results demonstrate that terahertz quantum cascade laser designs with variable barrier heights provide a viable alternative to the traditional active region designs with fixed barrier composition. Additional design space offered by using variable barriers may lead to future improvements in the terahertz quantum cascade laser performance.

1.
R.
Köhler
,
A.
Tredicucci
,
F.
Beltram
,
H. E.
Beere
,
E. H.
Linfield
,
A G.
Davies
,
D. A.
Ritchie
,
R. C.
Iotti
, and
F.
Rossi
,
Nature
417
(
6885
),
156
(
2002
).
2.
S.
Fathololoumi
,
E.
Dupont
,
C. W. I.
Chan
,
Z. R.
Wasilewski
,
S. R.
Laframboise
,
D.
Ban
,
A.
Matyas
,
C.
Jirauschek
,
Q.
Hu
, and
H. C.
Liu
,
Opt. Express
20
(
4
),
3866
(
2012
).
3.
H.
Luo
,
S. R.
Laframboise
,
Z. R.
Wasilewski
,
G. C.
Aers
,
H. C.
Liu
, and
J. C.
Cao
,
Appl. Phys. Lett.
90
(
4
),
041112
(
2007
).
4.
B. S.
Williams
,
H.
Callebaut
,
S.
Kumar
,
Q.
Hu
, and
J. L.
Reno
,
Appl. Phys. Lett.
82
(
7
),
1015
(
2003
).
5.
M. A.
Belkin
,
J. A.
Fan
,
S.
Hormoz
,
F.
Capasso
,
S. P.
Khanna
,
M.
Lachab
,
A. G.
Davies
, and
E. H.
Linfield
,
Opt. Express
16
(
5
),
3242
(
2008
).
6.
S.
Kumar
,
C. W. I.
Chan
,
Q.
Hu
, and
J. L.
Reno
,
Nat. Phys.
7
(
2
),
166
(
2011
).
7.
B. S.
Williams
,
Nat. Photonics
1
(
9
),
517
(
2007
).
8.
M. A.
Belkin
,
Q. J.
Wang
,
C.
Pflugl
,
A.
Belyanin
,
S. P.
Khanna
,
A. G.
Davies
,
E. H.
Linfield
, and
F.
Capasso
,
IEEE J. Sel. Top. Quantum Electron.
15
(
3
),
952
(
2009
).
9.
Y.
Chassagneux
,
Q. J.
Wang
,
S. P.
Khanna
,
E.
Strupiechonski
,
J.
Coudevylle
,
E. H.
Linfield
,
A. G.
Davies
,
F.
Capasso
,
M. A.
Belkin
, and
R.
Colombelli
,
IEEE Trans. THz Sci. Technol.
2
(
1
),
83
(
2012
).
10.
S.
Kumar
,
Q.
Hu
, and
J. L.
Reno
,
Appl. Phys. Lett.
94
(
13
),
131105
(
2009
).
11.
A.
Matyas
,
M. A.
Belkin
,
P.
Lugli
, and
C.
Jirauschek
,
Appl. Phys. Lett.
96
(
20
),
201110
(
2010
).
12.
S.
Fathololoumi
,
E.
Dupont
,
Z. R.
Wasilewski
,
C. W. I.
Chan
,
S. G.
Razavipour
,
S. R.
Laframboise
,
S.
Huang
,
Q.
Hu
,
D.
Ban
, and
H. C.
Liu
,
J. Appl. Phys.
113
(
11
),
113109
(
2013
).
13.
A.
Matyas
,
R.
Chashmahcharagh
,
I.
Kovacs
,
P.
Lugli
,
K.
Vijayraghavan
,
M. A.
Belkin
, and
C.
Jirauschek
,
J. Appl. Phys.
111
(
10
),
103106
(
2012
).
14.
G.
Scalari
,
M. I.
Amanti
,
M.
Fischer
,
R.
Terazzi
,
C.
Walther
,
M.
Beck
, and
J.
Faist
,
Appl. Phys. Lett.
94
(
4
),
041114
(
2009
).
15.
C.
Jirauschek
and
P.
Lugli
,
Phys. Status Solidi C
5
,
221
(
2008
).
16.
W.
Freeman
and
G.
Karunasiri
,
Phys. Rev. B
85
(
19
),
195326
(
2012
).
17.
Z. R.
Wasilewski
MBE growth of THz quantum cascade lasers
,” in
Molecular Beam Epitaxy: From Research to Mass Production
, edited by
M.
Henini
(
Elsevier
,
2012
).
18.
M. P.
Patkar
,
T. P.
Chin
,
J. M.
Woodall
,
M. S.
Lundstrom
, and
M. R.
Melloch
,
Appl. Phys. Lett.
66
(
11
),
1412
(
1995
).
19.
B. S.
Williams
,
S.
Kumar
,
Q.
Hu
, and
J. L.
Reno
,
Opt. Express
13
(
9
),
3331
(
2005
).
20.
C.
Sirtori
,
F.
Capasso
,
J.
Faist
,
A. L.
Hutchinson
,
D. L.
Sivco
, and
A. Y.
Cho
,
IEEE J. Quantum Electron.
34
(
9
),
1722
(
1998
).
You do not currently have access to this content.