Nano-composite silicon powders have been produced at a maximum process throughput of 6 g/min by plasma spraying with metallurgical grade silicon powder as raw material. The obtained powders are found to be fundamentally composed of crystalline silicon particles of 20–40 nm in diameter, and are coated with an ∼5-nm-thick amorphous carbonous layer when methane gas is additionally introduced during plasma spraying. The performance of half-cell batteries containing the powders as negative electrodes has shown that the capacity decay observed for the raw Si coarse particles is significantly improved by plasma treatment. The carbonous coating potentially contributes to an improvement in capacity retention, although coexisting SiC particles that inevitably form during high-temperature processing reduce the overall capacity.

1.
H.
Li
,
X.
Huang
,
L.
Chen
,
Z.
Wu
, and
Y.
Liang
,
Electrochem. Solid-State Lett.
2
,
547
(
1999
).
2.
J.
Graetz
,
C. C.
Ahn
,
R.
Yazami
, and
B.
Fultz
,
Electrochem. Solid-State Lett.
6
,
A194
(
2003
).
3.
K.
Zhao
,
M.
Pharr
,
J. J.
Classak
, and
Z.
Suo
,
J. Appl. Phys.
108
,
073517
(
2010
).
4.
X. H.
Liu
,
L.
Zhong
,
S.
Huang
,
S. X.
Mao
,
T.
Zhu
, and
J. Y.
Huang
,
ACS Nano
6
,
1522
(
2012
).
5.
A.
Magasinski
,
P.
Dixon
,
B.
Hertzberg
,
A.
Kvit
,
J.
Ayala
, and
G.
Yushin
,
Nature Mater.
9
,
353
(
2010
).
6.
C. K.
Chan
,
H.
Peng
,
G.
Liu
,
K.
Mcilwrath
,
Z. F.
Zhang
,
R. A.
Huggins
, and
Y.
Cui
,
Nat. Nanotechnol.
3
,
31
(
2008
).
7.
S. H.
Ng
,
J.
Wang
,
D.
Wexler
,
S. Y.
Chew
, and
H. K.
Liu
,
J. Phys. Chem. C
111
,
11131
(
2007
).
8.
T.
Yoshida
,
Pure Appl. Chem.
66
,
1223
(
1994
).
9.
H.
Huang
,
K.
Eguchi
,
M.
Kambara
, and
T.
Yoshida
,
J. Therm. Spray Technol.
15
,
83
(
2006
).
10.
K.
Iizuka
,
M.
Kambara
, and
T.
Yoshida
,
Sens. Actuators, B
182
,
250
(
2013
).
11.
A.
Shinozawa
,
K.
Eguchi
,
M.
Kambara
, and
T.
Yoshida
,
J. Therm. Spray Technol.
19
,
190
(
2010
).
12.
K.
Homma
,
M.
Kambara
, and
T.
Yoshida
, “
High throughput production of nanocomposite SiOx powders by plasma spray physical vapor deposition for negative electrode of lithium ion batteries
,”
Sci. Technol. Adv. Mater.
(submitted).
13.
H.
Huang
,
K.
Eguchi
, and
T.
Yoshida
,
J. Therm. Spray Technol.
15
,
72
(
2006
).
14.
M. I.
Boulos
,
P.
Fauchais
, and
E.
Pfender
,
Thermal Plasmas
(
Springer
,
1994
).
15.
The Japan Institute of Metals
,
Metals Data Book
, 3rd ed. (
Maruzen
,
1993
).
16.
M.
Kambara
,
A.
Shinozawa
,
K.
Aoshika
,
K.
Eguchi
, and
T.
Yoshida
,
J. Solid Mech. Mater. Eng.
4
,
94
(
2010
).
17.
F. F.
Abraham
,
Homogeneous Nucleation Theory
(
Academic Press
,
New York
,
1974
).
18.
J. L.
Margrave
,
The Characterization of High-temperature Vapors
(
John Wiley and Sons, Inc.
,
1967
).
19.
J. R.
Brock
and
G. M.
Hidy
,
J. Appl. Phys.
36
,
1857
(
1965
).
20.
G. D.
Ulrich
,
Combust. Sci. Technol.
4
,
47
(
1971
).
21.
M.
Yoshio
,
H.
Wang
,
K.
Fukuda
,
T.
Umeno
,
N.
Dimov
, and
Z.
Ogumi
,
J. Electrochem. Soc.
149
,
A1598
(
2002
).
22.
K.
Kang
,
H.-S.
Lee
,
D.-W.
Han
,
G.-S.
Kim
,
D.
Lee
,
G.
Lee
,
Y.-M.
Kang
, and
M.-H.
Jo
,
Appl. Phys. Lett.
96
,
053110
(
2010
).
You do not currently have access to this content.