We investigate the room temperature microstructure and high temperature magnetic properties of Ca2+-substituted Bi1–xCaxFeO3 (0 ≤ x ≤ 0.2) ceramics. The Bi1–xCaxFeO3 compound transforms from rhombohedral into tetragonal structure with the phase boundary lying around x = 0.1. Based on this, the magnetic modulation becomes significant and the strongest remnant magnetization Mr is obtained at x = 0.1 compound. An important observation is the ferromagnetic-like phase transition revealed at TFM = 878 K in pure BiFeO3. The TFM of Bi1–xCaxFeO3 varies with Ca concentration and is close to the TAFM when x = 0.1. The convergence between TFM and TAFM implies the severe competition between Fe3+−O2−−Fe3+ and unbalanced Fe3+−O2−−Fe2+ antiferromagnetic exchange interactions, which leads to the dramatic change around TAFM in the M-T curve of x = 0.1 compound. The structure-related modulation of magnetic structure and complex interaction between Fe3+ and Fe2+ may be the driving force for the excellent magnetic properties of x = 0.1 sample.

1.
J. B.
Goodenough
,
Rep. Prog. Phys.
67
,
1915
1993
(
2004
).
W.
Eerenstein
,
N. D.
Mathur
, and
J. F.
Scott
,
Nature (London)
442
,
759
(
2006
);
S.-W.
Cheong
and
M.
Mostovoy
,
Nature Mater.
6
,
13
(
2007
);
K. F.
Wang
,
J.-M.
Liu
, and
Z. F.
Ren
,
Adv. Phys.
58
,
321
(
2009
).
3.
C.
Tabares-Munoz
,
J. P.
Rivera
, and
H.
Schmid
,
Ferroelectrics
55
,
235
(
1984
).
4.
C. T.
Nelson
,
P.
Gao
,
J. R.
Jokisaari
,
C.
Adamo
,
C. M.
Folkman
,
C.-B.
Eom
,
D. G.
Schlom
, and
X. Q.
Pan
,
Science
334
,
968
(
2011
).
5.
K.
Yin
,
M.
Li
,
Y.
Liu
,
C.
He
,
F.
Zhuge
,
B.
Chen
,
W.
Lu
,
X.
Pan
, and
R.-W.
Li
,
Appl. Phys. Lett.
97
,
042101
(
2010
);
T.
Choi
,
S.
Lee
,
Y. J.
Choi
,
V.
Kiryukhin
, and
S. W.
Cheong
,
Science
324
,
63
66
(
2009
).
[PubMed]
6.
F.
Kubel
and
H.
Schmid
,
Acta Crystallogr., Sect. B: Struct. Sci.
46
,
698
(
1990
).
7.
R.
Haumont
,
P.
Bouvier
,
A.
Pashkin
,
K.
Rabia
,
S.
Frank
,
B.
Dkhil
,
W. A.
Crichton
,
C. A.
Kuntscher
, and
J.
Kreisel
,
Phys. Rev. B
79
,
184110
(
2009
).
8.
R.
Seshadri
and
N. A.
Hill
,
Chem. Mater.
13
,
2892
(
2001
);
N. A.
Hill
and
K. M.
Rabe
,
Phys. Rev. B
59
,
8759
(
1999
).
G.
Catalan
and
J. F.
Scott
,
Adv. Mater.
21
,
2463
(
2009
).
10.
I.
Sosnowska
,
T.
Peterlin-Neumaier
, and
E.
Steichele
,
J. Phys. C: Solid State Phys.
15
,
4835
(
1982
).
11.
X.
Qi
,
J.
Dho
,
R.
Tomov
,
M. G.
Blamire
, and
J. L.
MacManus-Driscoll
,
Appl. Phys. Lett.
86
,
062903
(
2005
);
G. W.
Pabst
,
L. W.
Martin
,
Y. H.
Chu
, and
R.
Ramesh
,
Appl. Phys. Lett.
90
,
072902
(
2007
).
12.
V. A.
Khomchenko
,
D. A.
Kiselev
,
J. M.
Vieira
,
J.
Li
,
A. L.
Kholkin
,
A. M. L.
Lopes
,
Y. G.
Pogorelov
,
J. P.
Araujo
, and
M.
Maglione
,
J. Appl. Phys.
103
,
024105
(
2008
);
G. L.
Yuan
,
S. W.
Or
,
J. M.
Liu
, and
Z. G.
Liu
,
Appl. Phys. Lett.
89
,
052905
(
2006
);
S. Y.
Chen
,
L. Y.
Wang
,
H. C.
Xuan
,
Y. N.
Zheng
,
D. H.
Wang
,
J.
Wu
,
Y. W.
Du
, and
Z. G.
Huang
,
J. Alloys Compd.
506
,
537
(
2010
);
Q.
Zhang
,
X. H.
Zhu
,
Y. H.
Xu
,
H. B.
Gao
,
Y. J.
Xiao
,
D. Y.
Liang
,
J. L.
Zhu
,
J. G.
Zhu
, and
D. Q.
Xiao
,
J. Alloys Compd.
546
,
57
62
(
2013
).
13.
G.
Catalan
,
K.
Sardar
,
N. S.
Church
,
J. F.
Scott
,
R. J.
Harrison
, and
S. A. T.
Redfern
,
Phys. Rev. B
79
,
212415
(
2009
).
14.
K.
Sardar
,
J.
Hong
,
G.
Catalan
,
P. K.
Biswas
,
M. R.
Lees
,
R. I.
Walton
,
J. F.
Scott
, and
S. A. T.
Redfern
,
J. Phys.: Condens. Matter
24
,
045905
(
2012
).
15.
V. A.
Khomchenko
,
I. O.
Troyanchuk
,
D. M.
Többens
,
V.
Sikolenko
, and
J. A.
Paixão
,
J. Phys.: Condens. Matter
25
,
135902
(
2013
).
16.
C.-H.
Yang
,
J.
Seidel
,
S. Y.
Kim
,
P. B.
Rossen
,
P.
Yu
,
M.
Gajek
,
Y. H.
Chu
,
L. W.
Martin
,
M. B.
Holcomb
,
Q.
He
,
P.
Maksymovych
,
N.
Balke
,
S. V.
Kalinin
,
A. P.
Baddorf
,
S. R.
Basu
,
M. L.
Scullin
, and
R.
Ramesh
,
Nature Mater.
8
,
485
(
2009
).
17.
I. A.
Kornev
,
S.
Lisenkov
,
R.
Haumont
,
B.
Dkhil
, and
L.
Bellaiche
,
Phys. Rev. Lett.
99
,
227602
(
2007
);
[PubMed]
R.
Das
and
K.
Mandal
,
J. Magn. Magn. Mater.
324
,
1913
(
2012
).
18.
H.
Schmid
,
J. Phys.: Condens. Matter
20
,
434201
(
2008
).
19.
P.
Tirupathi
and
A.
Chandra
,
J. Alloys Compd.
564
,
151
157
(
2013
).
20.
A. S.
Sigov
,
V. S.
Pokatilov
,
A. O.
Konovalova
, and
V. V.
Pokatilov
,
Dokl. Phys.
58
,
438
441
(
2013
).
21.
X. Q.
Zhang
,
Y.
Sui
,
X. J.
Wang
, and
Z.
Wang
,
J. Alloys Compd.
507
,
157
(
2010
).
22.
M. M.
Kumar
,
V. R.
Palkar
,
K.
Srinivas
, and
S. V.
Suryanarayana
,
Appl. Phys. Lett.
76
(
19
),
2764
2766
(
2000
).
23.
D.
Varshney
and
A.
Kumar
,
J. Mol. Struct.
1038
,
242
249
(
2013
).
24.
A. K.
Pradhan
,
K.
Zhang
,
D.
Hunter
,
J. B.
Dadson
,
G. B.
Loutts
,
P.
Bhattacharya
,
R.
Katiyar
,
J.
Zhang
,
D. J.
Sellmer
,
U. N.
Roy
,
Y.
Cui
, and
A.
Burger
,
J. Appl. Phys.
97
,
093903
(
2005
).
25.
I.
Dzyaloshinsky
,
J. Phys. Chem. Solids
4
,
241
(
1958
);
26.
A. M.
Kadomtseva
,
Yu. F.
Popov
,
A. P.
Pyatakova
,
G. P.
Vorob'ev
,
A. K.
Zvezdin
, and
D.
Viehland
,
Phase Transitions
79
,
1019
(
2006
).
27.
T.
Takeda
,
Y.
Yamaguchi
,
S.
Tomiyoshi
,
M.
Fukase
,
M.
Sugimoto
, and
H.
Watanabe
,
J. Phys. Soc. Jpn.
24
,
446
(
1968
);
L. M.
Corliss
,
J. M.
Hastings
,
W.
Kunnmann
, and
E.
Banks
,
Acta Crystallogr.
21
(Suppl. A),
95
(
1966
).
28.
E.
Belorizky
,
M. A.
Fremy
, and
J. P.
Govigan
,
J. Appl. Phys.
61
,
3971
(
1987
).
29.
F. P.
Gheorghiua
,
A.
Ianculescub
,
P.
Postolachea
,
N.
Lupuc
,
M.
Dobromira
,
D.
Lucaa
, and
L.
Mitoseriu
,
J. Alloys Compd.
506
,
862
867
(
2010
).
30.
Z. X.
Cheng
,
X. L.
Wang
,
Y.
Du
, and
S. X.
Dou
,
J. Phys. D: Appl. Phys.
43
,
242001
(
2010
).
31.
N.
Shamir
,
E.
Gurewitz
, and
H.
Shaked
,
Acta Crystallogr., Sect. A
34
,
662
(
1978
).
You do not currently have access to this content.