The tremendous amount of research in solar energy is directed toward intermediate band solar cell for its advantages compared with the conventional solar cell. The latter has lower efficiency because the photons have lower energy than the bandgap energy and cannot excite mobile carriers from the valence band to the conduction band. On the other hand, if mini intermediate band is introduced between the valence and conduction bands, then the smaller energy photons can be used to promote charge carriers transfer to the conduction band and thereby the total current increases while maintaining a large open circuit voltage. In this article, the influence of the new band on the power conversion efficiency for structure of quantum dots intermediate band solar cell is theoretically investigated and studied. The time-independent Schrödinger equation is used to determine the optimum width and location of the intermediate band. Accordingly, achievement of a maximum efficiency by changing the width of quantum dots and barrier distances is studied. Theoretical determination of the power conversion efficiency under the two different ranges of QD width is presented. From the obtained results, the maximum power conversion efficiency is about 70.42%. It is carried out for simple cubic quantum dot crystal under fully concentrated light. It is strongly dependent on the width of quantum dots and barrier distances.

1.
W.
Shockley
and
H. J.
Queisser
, “
Detailed balance limit of efficiency of p‐n junction solar cells
,”
J. Appl. Phys.
32
,
510
519
(
1961
).
2.
A.
Martí
,
E.
Antolín
,
E.
Cánovas
,
N.
López
, and
A.
Luque
, “
Progress in quantum-dot intermediate band solar cell research
,” in Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany,
2006
.
3.
A.
Nasr
and
A.
Aly
, “
Theoretical investigation of some parameters into the behavior of quantum dot solar cells
,”
J. Appl. Phys.
(in press).
4.
A.
Nasr
, “
Theoretical study of the photocurrent performance into quantum dot solar cells
,”
J. Opt. Laser Technol.
48
,
135
140
(
2013
).
5.
A.
Luque
and
A.
Marti
, “
Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels
,”
Phys. Rev. Lett.
78
,
5014
5017
(
1997
).
6.
A.
Luque
,
P. G.
Linares
,
E.
Antolín
,
I.
Ramiro
,
C. D.
Farmer
,
E.
Hernández
,
I.
Tobías
,
C. R.
Stanley
, and
A.
Martí
, “
Understanding the operation of quantum dot intermediate band solar cells
,”
J. Appl. Phys.
111
,
044502
(
2012
).
7.
P. G.
Linaresa
,
C. D.
Farmerb
,
E.
Antolína
,
S.
Chakrabartib
,
A. M.
Sánchez
,
T.
Benc
,
S. I.
Molina
,
C. R.
Stanley
,
A.
Martf
, and
A.
Luque
, “
Inx(GayAl1y)1x As quatemary alloys for quantum dot intermediate band solar cells
,”
Energy Procedia
2
(
1
),
133
141
(
2010
).
8.
C.-c.
Lin
,
W.-L.
Liu
, and
C.-Y.
Shih
, “
Detailed balance model for intermediate band solar cells with photon conservation
,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference (PVSC),
2011
.
9.
L.
Cuadra
,
A.
Martı
, and
A.
Luque
, “
Present status of intermediate band solar cell research
,”
Thin Solid Films
451–452
,
593
599
(
2004
).
10.
M. Y.
Levy
,
C.
Honsberg
,
A.
Marti
, and
A.
Luque
, “
Quantum dot intermediate band solar cell material systems-with negligible valance band offsets
,” in Proceedings of the 31st IEEE Photovoltaic Specialists Conference,
2005
.
11.
Q.
Deng
,
X.
Wang
,
C.
Yang
,
H.
Xiao
,
C.
Wang
,
H.
Yin
,
Q.
Huo
,
J.
Li
,
Z.
Wang
, and
X.
Hou
, “
Theoretical study on InxGa1xN/GaN quantum dots solar cell
,”
Physica B
406
,
73
76
(
2011
).
12.
O. L.
Lazarenkova
and
A. A.
Balandin
, “
Miniband formation in a quantum dot crystal
,”
J. Appl. Phys.
89
(
10
),
5509
(
2001
).
13.
Q.
Shao
and
A. A.
Balandin
, “
Intermediate-band solar cells based on quantum dot supracrystals
,”
Appl. Phys. Lett.
91
,
163503
(
2007
).
14.
S.
Tomic
,
A.
Martí
,
E.
Antolí
, and
A.
Luque
, “
On inhibiting Auger intraband relaxation in InAs/GaAs quantum dot intermediate band solar cells
,”
Appl. Phys. Lett.
99
,
053504
(
2011
).
15.
S.
Tomić
, “
Intermediate-band solar cells: Influence of band formation on dynamical processes in InAs/GaAs quantum dot arrays
,”
Phys. Rev. B
82
,
195321
(
2010
).
16.
S.
Tomić
, “
Radiative and non-radiative processes in intermediate band solar cells
,” in
Proceedings of the IEEE 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)
2012
, pp.
111
and 112.
17.
S.
Wu
and
S.
Tomić
, “
Exciton states and oscillator strengths in a cylindrical quantum wire with finite potential under transverse electric field
,”
J. Appl. Phys.
112
,
033715
(
2012
).
18.
S.
Tomić
and
N.
Vukmirović
, “
Excitonic and biexcitonic properties of single GaN quantum dots modeled by 8-band k⋅p theory and configuration-interaction method
,”
Phys. Rev. B
79
,
245330
(
2009
).
19.
E. J.
Steven
, “
Quantum dot intermediate band solar cells: Design criteria and optimal materials
,” Ph.D. thesis (
Drexel University
, Philadelphia, Pennsylvania, USA
2012
).
20.
T.
Soga
,
Nanostructured Materials for Solar Energy Conversion
, 1st ed. (
Elsevier
,
2006
).
21.
S.
Birner
, odeling of Semiconductor Nanostructures and Semiconductor–Electrolyte Interfaces, Ph.D. thesis (
Technical University Muenchen
, Germany,
2011
).
22.
S. P.
Day
, “
The Kronig-Penney approximation: May it live on
,”
IEEE Trans. Educ.
33
(
4
),
355
(
1990
).
23.
R.
Aguinaldo
, “
Modeling solutions and simulations for advanced III-V photovoltaics based on nanostructures
,” M.Sc. Thesis (
College of Science, Rochester Institute of Technology
, Rochester, NY,
2008
).
24.
B.
Gil
,
III-Nitride Semiconductors and Their Modern Devices
, 1st ed. (
Oxford University Press
,
2013
).
25.
J.
Pal
,
G.
Tse
,
V.
Haxha
,
M. A.
Migliorato
, and
S.
Tomić
, “
Second-order piezoelectricity in wurtzite III-N semiconductors
,”
Phys. Rev. B
84
,
085211
(
2011
).
26.
W.
van Roosbroeck
and
W.
Shockley
, “
Photon-radiative recombination of electrons and holes in germanium
,”
Phys. Rev.
94
,
1558
1560
(
1954
).
27.
A.
Martí
,
L.
Cuadra
, and
A.
Luque
, “
Quasi-drift diffusion model for the quantum dot intermediate band solar cell
,”
IEEE Trans. Electron Devices
49
(
9
),
1632
(
2002
).
28.
L. A.
Kosyachenko
,
Solar Cells - New Aspects and Solutions
(
InTech
,
2011
).
29.
S. P.
Bremner
and
C. B.
Honsberg
, “
Intermediate band solar cell with non-ideal band structure under AMl.5 spectrum
,” in Proceedings of the 38th IEEE Photovoltaic Specialists Conference (PVSC),
2012
.
30.
A.
Martí
,
L.
Cuadra
, and
A.
Luque
, “
Partial filling of a quantum dot intermediate band for solar cells
,”
IEEE Trans. Electron Devices
48
(
10
),
2394
(
2001
).
31.
J.
Ojajärvi
, “
Tetrahedral chalcopyrite quantum dots in solar-cell applications
,” M. Sc. Thesis (
University of Jyväskylä
,
2010
).
32.
A.
Luque
and
A.
Martí
, “
Impact-ionization-assisted intermediate band solar cell
,”
IEEE Trans. Electron Devices
50
(
2
),
447
(
2003
).
33.
D.
Qing-Wen
,
W.
Xiao-Liang
,
Y.
Cui-Bai
,
X.
Hong-Ling
,
W.
Cui-Mei
,
Y.
Hai-Bo
,
H.
Qi-Feng
,
B.
Yang
,
L.
Jin-Min
,
W.
Zhan-Guo
, and
H.
Xun
, “
Computational investigation of InxGa1−xN/InN quantum-dot intermediate-band solar cell
,”
Chin. Phys. Lett.
28
(
1
),
018401
(
2011
).
34.
A.
Nasr
, “
Theoretical model for observation of the conversion efficiency into quantum dot solar cells
,”
Renewable Energy
(in press).
You do not currently have access to this content.