A combined magnetization and zero-field 59Co spin-echo nuclear magnetic resonance (NMR) study has been carried out on one member of a recently developed class of highly ordered mesoporous nanostructured materials, mesoporous Co3O4 (designated UCT-8, University of Connecticut, mesoporous materials). The material was synthesized using one-step soft-templating by an inverse micelles packing approach. Characterization of UCT-8 by powder x-ray diffraction and electron microscopy reveals that the mesostructure consists of random close-packed Co3O4 nanoparticles ≈ 12 nm in diameter. The N2 sorption isotherm for UCT-8, which is type IV with a type H1 hysteresis loop, yields a 134 m2/g BET surface area and a 7.7 nm BJH desorption pore diameter. The effect of heat treatment on the structure is discussed. The antiferromagnetic Co3O4 nanoparticles have a Néel temperature TN = 27 K, somewhat lower than the bulk. A fit to the Curie-Weiss law over the temperature range 75 K ≤ T ≤ 300 K yields an effective magnetic moment of μeff = 4.36 μB for the Co2+ ions, indicative of some orbital contribution, and a Curie-Weiss temperature Θ = −93.5 K, consistent with antiferromagnetic ordering. The inter-sublattice and intra-sublattice exchange constants for the Co2+ ions are J1/kB = (−)4.75 K and J2/kB = (−)0.87 K, respectively, both corresponding to antiferromagnetic coupling. The presence of uncompensated surface spins is observed below TN with shifts in the hysteresis loops, i.e., an exchange-bias effect. The 59Co NMR spectrum for UCT-8, which is attributed to Co2+ ions at the tetrahedral A sites, is asymmetrically broadened with a peak at ≈55 MHz (T = 4.2 K). Since there is cubic symmetry at the A-sites, the broadening is indicative of a magnetic field distribution due to the uncompensated surface spins. The spectrum is consistent with antiferromagnetically ordered particles that are nanometer in size and single domain.

1.
H.
Tüysüz
,
E. L.
Salabas
,
E.
Bill
,
H.
Bongard
,
B.
Spliethoff
,
C. W.
Lehmann
, and
F.
Schüth
,
Chem. Mater.
24
,
2493
(
2012
) and references therein.
2.
G. X.
Wang
,
H.
Liu
,
J.
Horvat
,
B.
Wang
,
S.
Qian
,
J.
Park
, and
H.
Ahn
,
Chem. Eur. J.
16
,
11020
(
2010
) and references therein.
3.
C. H.
Chem
,
S. F.
Abbas
,
A.
Morey
,
S.
Sithambaram
,
L. P.
Xu
,
H. F.
Garces
,
W. A.
Hines
, and
S. L.
Suib
,
Adv. Mater.
20
,
1205
(
2008
) and references therein.
4.
B. Z.
Tian
,
X. Y.
Liu
,
L. A.
Solovyov
,
Z.
Liu
,
H. F.
Yang
,
Z. D.
Zhang
,
S. H.
Xie
,
F. Q.
Zhang
,
B.
Tu
,
C. Z.
Yu
,
O.
Terasaki
, and
D. Y.
Zhao
,
J. Am. Chem. Soc.
126
,
865
(
2004
) and references therein.
5.
F.
Schüth
,
Chem. Mater.
13
,
3184
(
2001
).
6.
M. J.
Benitez
,
O.
Petracic
,
H.
Tüysüz
,
F.
Schüth
, and
H.
Zabel
,
EPL
88
,
27004
(
2009
).
7.
M. J.
Benitez
,
O.
Petracic
,
E. L.
Salabas
,
F.
Radu
,
H.
Tüysüz
,
F.
Schüth
, and
H.
Zabel
,
Phys. Rev. Lett.
101
,
097206
(
2008
).
8.
H.
Tüysüz
,
C. W.
Lehmann
,
H.
Bongard
,
B.
Tesche
,
R.
Schmidt
, and
F.
Schüth
,
J. Am. Chem. Soc.
130
,
11510
(
2008
).
9.
A.
Rumplecker
,
F.
Kleitz
,
E. L.
Salabas
, and
F.
Schüth
,
Chem. Mater.
19
,
485
(
2007
).
10.
E. L.
Salabas
,
A.
Rumplecker
,
F.
Kleitz
,
F.
Radu
, and
F.
Schüth
,
Nano Lett.
6
,
2977
(
2006
).
11.
Y. Q.
Wang
,
C. M.
Yang
,
W.
Schmidt
,
B.
Spliethoff
,
E.
Bill
, and
F.
Schüth
,
Adv. Mater.
17
,
53
(
2005
).
12.
K. M.
Shaju
,
F.
Jiao
,
A.
Débart
, and
P. G.
Bruce
,
Phys. Chem. Chem. Phys.
9
,
1837
(
2007
).
13.
K. T.
Nam
,
D. W.
Kim
,
P. J.
Yoo
,
C. Y.
Chiang
,
N.
Meethong
,
P. T.
Hammond
,
Y. M.
Chiang
, and
A. M.
Belcher
,
Science
312
,
885
(
2006
).
14.
The UCT mesoporous materials have been developed by Suib and co-workers at the University of Connecticut;
A. S.
Poyraz
,
C. H.
Kuo
,
A.
Biswas
,
C. K.
King'ondu
, and
S. L.
Suib
,
Nat. Commun.
4
,
2952
(
2013
).
[PubMed]
15.
S.
Brunauer
,
P. H.
Emmet
, and
E.
Teller
,
J. Am. Chem. Soc.
60
,
309
(
1938
).
16.
E. P.
Barret
,
L. G.
Joyner
, and
P. P.
Halenda
,
J. Am. Chem. Soc.
73
,
373
(
1951
).
17.
W.
Hines
,
J.
Budnick
,
D.
Perry
,
S.
Majetich
,
R.
Booth
, and
M.
Sachan
,
Phys. Status Solidi B
248
,
741
(
2011
).
18.
K. S. W.
Sing
,
D. H.
Everett
,
R. A. W.
Haul
,
L.
Moscou
,
R. A.
Pierotti
,
J.
Rouquerol
, and
T.
Siemieniewska
,
Pure Appl. Chem.
57
,
603
(
1985
).
19.
W. L.
Roth
,
J. Phys. Chem. Solids
25
,
1
(
1964
).
20.
W.
Kündig
,
M.
Kolbelt
,
H.
Appel
,
G.
Constabaris
, and
R. H.
Lindquist
,
J. Phys. Chem. Solids
30
,
819
(
1969
).
21.
S.
Angelov
,
E.
Zhecheva
,
R.
Stoyanova
, and
M.
Atanasov
,
J. Phys. Chem. Soc.
51
,
1157
(
1990
).
22.
P.
Dutta
,
M. S.
Seehra
,
S.
Thota
, and
J.
Kumar
,
J. Phys. Condens. Matter
20
,
015218
(
2008
).
23.
T.
Fukai
,
Y.
Furukawa
,
S.
Wada
, and
K.
Miyatani
,
J. Phys. Soc. Jpn.
65
,
4067
(
1996
).
24.
Y. D.
Zhang
,
J. I.
Budnick
,
W. A.
Hines
,
C. L.
Chien
, and
J. Q.
Xiao
,
Appl. Phys. Lett.
72
,
2053
(
1998
).
25.
J. L.
Dormann
,
D.
Fiorani
, and
E.
Tronc
,
Adv. Chem. Phys.
98
,
283
(
1997
);
See the review by
J. L.
Dormann
,
D.
Fiorani
, and
E.
Tronc
,
Magnetic Relaxation in Fine-Particle Systems
, Advances in Chemical Physics Vol. XCVIII, edited by
I.
Prigogine
and
S. A.
Rice
(
Wiley
,
New York
,
1997
), p.
283
.
26.
P. W.
Selwood
,
Magnetochemistry
(
Interscience
,
New York
,
1956
), p.
78
.
27.
C.
Kittel
,
Introduction to Solid State Physics
, 7th ed. (
Wiley
,
New York
,
1996
), p.
426
.
28.
W. H.
Meiklejohn
and
C. P.
Bean
,
Phys. Rev.
102
,
1413
(
1956
).
29.
A. M.
Morey
,
N.
Li
,
W. A.
Hines
,
D. M.
Perry
,
M.
Jain
,
G. L.
Haller
, and
S. L.
Suib
,
J. Appl. Phys.
110
,
103904
(
2011
).
30.
L.
Néel
,
C. R. Acad. Sci. Paris
252
,
4075
(
1961
).
31.
J.
Nogués
,
J.
Sorta
,
V.
Langlais
,
V.
Skumryev
,
S.
Suriñach
,
J. S.
Muñoz
, and
M. D.
Baró
,
Phys. Rep.
422
,
65
(
2005
).
32.
S. A.
Majetich
and
M.
Sachan
,
J. Phys. D: Appl. Phys.
39
,
R407
(
2006
).
33.
A. H.
Morrish
,
The Physical Principles of Magnetism
(
Wiley
,
New York
,
1965
).
34.
G.
Srinivasan
and
M. S.
Seehra
,
Phys. Rev. B
28
,
6542
(
1983
).
35.
T.
Ambrose
and
C. L.
Chien
,
Phys. Rev. Lett.
76
,
1743
(
1996
).
36.
P. W.
Anderson
,
Phys. Rev.
79
,
705
(
1950
).
37.
K.
Miyatani
,
K.
Kohn
,
H.
Kaminura
, and
S.
Iida
,
J. Phys. Soc. Jpn.
21
,
464
(
1966
).
You do not currently have access to this content.