In this work, we present the pulsing frequency induced change in the structural, optical, vibrational, and luminescence properties of tungsten oxide (WO3) thin films deposited on microscopic glass and fluorine doped tin oxide (SnO2:F) coated glass substrates by pulsed dc magnetron sputtering technique. The WO3 films deposited on SnO2:F substrate belongs to monoclinic phase. The pulsing frequency has a significant influence on the preferred orientation and crystallinity of WO3 film. The maximum optical transmittance of 85% was observed for the film and the slight shift in transmission threshold towards higher wavelength region with increasing pulsing frequency revealed the systematic reduction in optical energy band gap (3.78 to 3.13 eV) of the films. The refractive index (n) of films are found to decrease (1.832 to 1.333 at 550 nm) with increasing pulsing frequency and the average value of extinction coefficient (k) is in the order of 10−3. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (Ed) parameters, dielectric constants, plasma frequency, oscillator strength, and oscillator energy (Eo) of WO3 films were calculated and reported for the first time due to variation in pulsing frequency during deposition by pulsed dc magnetron sputtering. The Eo is change between 6.30 and 3.88 eV, while the Ed varies from 25.81 to 7.88 eV, with pulsing frequency. The Raman peak observed at 1095 cm−1 attributes the presence of W-O symmetric stretching vibration. The slight shift in photoluminescence band is attributed to the difference in excitons transition. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.

1.
C. G.
Granqvist
,
Handbook of Inorganic Electrochromic Materials
(
Elsevier
,
Amsterdam
,
1995
), pp.
1
19
.
2.
P. M. S.
Monk
,
R. J.
Mortimer
, and
D. R.
Rosseinsky
,
Electrochromism: Fundamentals and Applications
(
VCH
,
Weinheim
,
1995
), pp.
4
and 5.
3.
S. K.
Deb
,
Appl. Opt.
3J
,
192
(
1969
).
4.
C. G.
Granqvist
,
Appl. Phys. A
57
,
3
(
1993
).
5.
R.
Sivakumar
,
A. M. E.
Raj
,
B.
Subramanian
,
M.
Jayachandran
,
D. C.
Trivedi
, and
C.
Sanjeeviraja
,
Mater. Res. Bull.
39
,
1479
(
2004
).
6.
B.
Marsen
,
E. L.
Miller
,
D.
Paluselli
, and
R. E.
Rocheleau
,
Int. J. Hydrogen Energy
32
,
3110
(
2007
);
R. J.
Bose
,
R.
Vinodkumar
,
S. K.
Sudheer
,
V. R.
Reddy
,
V.
Ganesan
, and
V. P. M.
Pillai
,
J. Appl. Phys.
112
,
114311
(
2012
).
7.
Y.
Yamada
,
K.
Tajima
,
S.
Bao
,
M.
Okada
,
K.
Yoshimura
, and
A.
Roos
,
J. Appl. Phys.
103
,
063508
(
2008
);
H.
Zhang
,
Q.
Wan
,
C.
Wan
,
G.
Wu
, and
L.
Zhu
,
Appl. Phys. Lett.
102
,
052905
(
2013
).
8.
R.
Sivakumar
,
M.
Jayachandran
, and
C.
Sanjeeviraja
,
Mater. Chem. Phys.
87
,
439
(
2004
).
9.
L.
Su
and
Z.
Lu
,
J. Phys. Chem. Solids
59
,
1175
(
1998
).
10.
J.
Hao
,
S. A.
Studenikin
, and
M.
Cocivera
,
J. Appl. Phys.
90
,
5064
(
2001
).
11.
G.
Papadimitropoulos
,
N.
Vourdas
,
K.
Giannakopoulos
,
M.
Vasilopoulou
, and
D.
Davazoglou
,
J. Appl. Phys.
109
,
103527
(
2011
).
12.
N.
Zhang
,
Y.
Hu
, and
X.
Liu
,
Appl. Phys. Lett.
103
,
033301
(
2013
).
13.
D. S.
Shang
,
L.
Shi
,
J. R.
Sun
,
B. G.
Shen
,
F.
Zhuge
,
R. W.
Li
, and
Y. G.
Zhao
,
Appl. Phys. Lett.
96
,
072103
(
2010
).
14.
P. J.
Kelly
,
J.
Hisek
,
Y.
Zhou
,
R. D.
Pilkington
, and
R. D.
Arnell
,
Surf. Eng.
20
,
157
(
2004
).
15.
R. D.
Arnell
,
P. J.
Kelly
, and
J. W.
Bradley
,
Surf. Coat. Technol.
188–189
,
158
(
2004
).
16.
E.
Nam
,
Y.-H.
Kang
,
D.-J.
Son
,
D.
Jung
,
S.-J.
Hong
, and
Y. S.
Kim
,
Surf. Coat. Technol.
205
,
S129
(
2010
).
17.
X.
Sun
,
Z.
Liu
, and
H.
Cao
,
J. Alloys Compd.
504S
,
S418
(
2010
).
18.
A.
Karuppasamy
and
A.
Subrahmanyam
,
J. Appl. Phys.
101
,
113522
(
2007
).
19.
T.
Toyoda
,
J. Appl. Phys.
63
,
5166
(
1988
);
D.
Davazoglou
and
A.
Donnadieu
,
J. Appl. Phys.
72
,
1502
(
1992
).
20.
N. A.
Subrahamanyam
,
A Textbook of Optics
, 9th ed. (
Brj Laboratory
,
India
,
1977
);
K. S.
Usha
,
R.
Sivakumar
, and
C.
Sanjeeviraja
,
J. Appl. Phys.
114
,
123501
(
2013
);
A.
Paliwal
,
A.
Sharma
,
M.
Tomar
, and
V.
Gupta
,
J. Appl. Phys.
115
,
043104
(
2014
).
21.
E.
Washizu
,
A.
Yamamoto
,
Y.
Abe
,
M.
Kawamura
, and
K.
Sasaki
,
Solid State Ionics
165
,
175
(
2003
);
S.
Sawada
and
G. C.
Danielson
,
Phys. Rev.
113
,
1008
(
1959
).
22.
C.
Kittel
,
Introduction to Solid State Physics
, 7th ed. (
John Wiley & Sons Inc.
,
Singapore
,
1996
), pp.
307
and 308;
A.
Goswami
,
Thin Film Fundamentals
(
New Age International (P) Ltd.
,
New Delhi
,
2006
), p.
376
.
23.
Z.
El-Gohary
,
M.
El Nahass
,
H.
Soliman
, and
Y. L.
El-Kady
,
J. Mater. Sci. Technol.
19
,
77
(
2003
).
24.
S. A.
Mahmoud
,
S.
Alshomer
, and
A.
Mou'ad
,
J. Mod. Phys.
2
,
1178
(
2011
).
25.
M. G.
Hutchins
,
O.
Abu-Alkhair
,
M. M.
El-Nahass
, and
K.
Abd El-Hady
,
Mater. Chem. Phys.
98
,
401
(
2006
).
26.
T. S.
Moss
,
Optical Properties of Semiconductors
(
Butterworths Scientific Publications
,
London
,
1959
), p.
15
.
27.
S. H.
Wemple
and
M.
Di Domenico
,
Phys. Rev. B
3
,
1338
(
1971
).
28.
B. D.
Cullity
,
Elements of X-ray Diffraction
(
Addison-Wesley Publishing Company Inc.
,
1978
), p.
284
.
29.
J.
Lin
,
J. J.
Moore
,
B.
Mishra
,
M.
Pinkas
,
W. D.
Sproul
, and
J. A.
Rees
,
Surf. Coat. Technol.
202
,
1418
(
2008
).
30.
Y. C.
Lin
,
J. Y.
Li
, and
W. T.
Yen
,
Appl. Surf. Sci.
254
,
3262
(
2008
).
31.
G. B.
Williamson
and
R. C.
Smallman
,
Philos. Mag.
1
,
34
(
1956
).
32.
S.
Lalitha
,
R.
Sathyamoorthy
,
S.
Senthilarasu
,
A.
Subbarayan
, and
K.
Natarajan
,
Sol. Energy Mater. Sol. Cells
82
,
187
(
2004
).
33.
A. Z.
Moshfegh
,
R.
Azimirad
, and
O.
Akhavan
,
Thin Solid Films
484
,
124
(
2005
).
34.
D. B.
Migas
,
V. L.
Shaposhnikov
,
V. N.
Rodin
, and
V. E.
Borisenko
,
J. Appl. Phys.
108
,
093713
(
2010
).
35.
M.
Regragui
,
M.
Addou
,
A.
Outzourhit
,
J. C.
Bernede
,
E. EL.
Idrissi
,
E.
Benseddik
, and
A.
Kachouane
,
Thin Solid Films
358
,
40
(
2000
).
T. S.
Moss
,
Proc. Phys. Soc. London, Sect.
67B
,
775
(
1954
).
37.
38.
F.
Yakuphanoglu
,
S.
Ilican
,
M.
Caglar
, and
Y.
Caglar
,
J. Optoelectron. Adv. Mater.
9
,
2180
(
2007
).
39.
E.
György
and
A.
Pérez del Pino
,
J. Mater. Sci.
46
,
3560
(
2011
).
40.
S.
Bhaskar
,
S. B.
Majumder
,
M.
Jain
,
P. S.
Dobal
, and
R. S.
Katiyar
,
Mater. Sci. Eng. B
87
,
178
(
2001
).
41.
M.
Caglar
,
S.
Ilican
,
Y.
Calgan
,
Y.
Sahin
,
F.
Yakuphanogler
, and
D.
Hur
,
Spectrochim. Acta, Part A
71
,
621
(
2008
).
42.
43.
R.
Solarska
,
B. D.
Alexander
, and
J.
Augustynski
,
C. R. Chimie
9
,
301
(
2006
).
44.
T.
Ivanova
,
K. A.
Gesheva
,
M.
Kalitzova
,
B.
Marsen
,
B.
Cole
, and
E. L.
Miller
,
Mater. Sci. Eng. B
142
,
126
(
2007
).
45.
T.
Hirata
,
K.
Ishioka
, and
M.
Kitajima
,
Appl. Phys. Lett.
68
,
458
(
1996
);
R.
Sivakumar
,
C.
Sanjeeviraja
,
M.
Jayachandran
,
R.
Gopalakrishnan
,
S. N.
Sarangi
,
D.
Paramanik
, and
T.
Som
,
J. Appl. Phys.
101
,
034913
(
2007
).
46.
J.
Liqiang
,
Q.
Yichun
,
W.
Baiqi
,
L.
Shudan
,
J.
Baojiang
,
Y.
Libin
,
F.
Wei
,
F.
Honggang
, and
S.
Jiazhong
,
Sol. Energy Mater. Sol. Cells
90
,
1773
(
2006
).
47.
C. Y.
Su
and
H. C.
Lin
,
J. Phys. Chem. C
113
,
4042
(
2009
).
48.
S.
Chaure
,
N. B.
Chaure
, and
R. K.
Pandey
,
Physica E
28
,
439
(
2005
).
You do not currently have access to this content.