Seeded crystallization and solidification in nanoscale confinement volumes have become an important and complex topic. Due to the complexity and limitations in observing nanoscale crystallization, computer simulation can provide valuable details for supporting and interpreting experimental observations. In this article, seeded crystallization from nano-confined liquid, as represented by the crystallization of a suspended gold nano-droplet seeded by a pre-existing gold nanocrystal seed, was investigated using molecular dynamics simulations in canonical (NVT) ensemble. We found that the crystallization temperature depends on nano-confinement volume, crystal orientation, and seed size as explained by classical two-sphere model and Gibbs-Thomson effect.

1.
J. S.
Im
and
H. J.
Kim
,
Appl. Phys. Lett.
64
,
2303
(
1994
).
2.
S. D.
Brotherton
,
Semicond. Sci. Technol.
10
,
721
(
1995
).
3.
G.
Andrae
,
J.
Bergmann
,
F.
Falk
, and
E.
Ose
,
Thin Solid Films
337
,
98
(
1999
).
4.
Y.
Liu
,
M. D.
Deal
, and
J. D.
Plummer
,
Appl. Phys. Lett.
84
,
2563
(
2004
).
5.
M.
Miyao
,
K.
Toko
,
T.
Tanaka
, and
T.
Sadoh
,
Appl. Phys. Lett.
95
,
022115
(
2009
).
6.
K.
Toko
,
T.
Sakane
,
T.
Tanaka
,
T.
Sadoh
, and
M.
Miyao
,
Appl. Phys. Lett.
95
,
112107
(
2009
).
7.
V. D.
Cammilleri
,
V.
Yam
,
F.
Fossard
,
C.
Renard
,
D.
Bouchier
,
P. F.
Fazzini
, and
M.
Hytch
,
J. Appl. Phys.
106
,
093512
(
2009
).
8.
R.
Matsumura
,
Y.
Tojo
,
M.
Kurosawa
,
T.
Sadoh
,
I.
Mizushima
, and
M.
Miyao
,
Appl. Phys. Lett.
101
,
241904
(
2012
).
9.
Y. S.
Woo
,
K.
Kang
,
M.
Jo
,
J.
Jeon
, and
M.
Kim
,
Appl. Phys. Lett.
91
,
223107
(
2007
).
10.
H.
Arora
,
P.
Du
,
K. W.
Tan
,
J. K.
Hyun
,
J.
Grazul
,
H. L.
Xin
,
D. A.
Muller
,
M. O.
Thompson
, and
U.
Wiesner
,
Science
330
(
6001
),
214
(
2010
).
11.
A.
Chimmalgi
,
D. J.
Hwang
, and
C. P.
Grigoropoulos
,
Nano Lett.
5
,
1924
(
2005
).
12.
B.
Xiang
,
D. J.
Hwang
,
J. B.
In
,
S.
Ryu
,
J.
Yoo
,
O.
Dubon
,
A. M.
Minor
, and
C. P.
Grigoropoulos
,
Nano Lett.
12
(
5
),
2524
2529
(
2012
).
13.
O.
Van Overschelde
,
G.
Guisbiers
, and
M.
Wautelet
,
J. Phys. Chem. C
113
(
34
),
15343
15345
(
2009
).
14.
H.
Pan
,
N.
Misra
,
S.
Ko
,
C. P.
Grigoropoulos
,
N.
Miller
,
E. E.
Haller
, and
O.
Dubon
,
Appl. Phys. A: Mater. Sci. Process.
94
(
1
),
111
(
2009
).
15.
H.
Pan
,
S. H.
Ko
,
N.
Misra
, and
C. P.
Grigoropoulos
,
Appl. Phys. Lett.
94
(
7
),
071117
(
2009
).
16.
S. J.
Cooper
,
C. E.
Nicholson
, and
J.
Liu
,
J. Chem. Phys.
129
,
124715
(
2008
).
17.
Ph.
Buffat
and
J. P.
Borel
,
Phys. Rev. A
13
(
6
),
2287
(
1976
).
18.
R.
Kofman
,
P.
Cheyssac
,
A.
Aouaj
,
Y.
Lereah
,
G.
Deutscher
, and
T.
Ben-David
,
Surf. Sci.
303
(
1–2
),
231
(
1994
).
19.
D.
Schebarchov
and
S. C.
Hendy
,
Phys. Rev. Lett.
96
,
256101
(
2006
).
20.
P.
Pawlow
,
Z. Phys. Chem.
65
(
1
),
545
(
1909
).
21.
H.
Reiss
and
I. B.
Wilson
,
J. Colloid Sci.
3
,
551
(
1948
).
22.
C. R. M.
Wronski
,
Brit. J. Appl. Phys.
18
,
1731
(
1967
).
23.
H. S.
Nam
,
N. M.
Hwang
,
B. D.
Yu
, and
J. K.
Yoon
,
Phys. Rev. Lett.
89
(
27
),
275502
(
2002
).
24.
E.
Mendez-Villuendas
and
R. K.
Bowles
,
Phys. Rev. Lett.
98
,
185503
(
2007
).
25.
H.
Pan
,
S.
Ko
, and
C. P.
Grigoropoulos
,
J. Heat Transfer
130
,
092404
(
2008
).
26.
Y.
Shibuta
and
T.
Suzuki
,
J. Chem. Phys.
129
,
144102
(
2008
).
27.
F.
Ercolessi
,
M.
Parrinello
, and
E.
Tosatti
,
Philos. Mag. A
58
(
1
),
213
226
(
1988
).
28.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
,
Phys. Rev. B
28
,
784
(
1983
).
29.
Y.
Wang
,
S.
Teitel
, and
C.
Dellago
,
Nano Lett.
5
(
11
),
2174
(
2005
).
30.
G.
Opletal
,
C. A.
Feigl
,
G.
Grocholar
,
I. K.
Snook
, and
S. P.
Russo
,
Chem. Phys. Lett.
482
,
281
286
(
2009
).
31.
A. S.
Barnard
and
P.
Zapol
,
J. Chem. Phys.
121
(
9
),
4276
(
2004
).
32.
S. J.
Ino
,
Phys. Soc. Jpn.
27
,
941
953
(
1969
).
33.
B.
Wang
,
M.
Liu
,
Y.
Wang
, and
X.
Chen
,
J. Phys. Chem. C
115
,
11374
(
2011
).
34.
Y. G.
Chushak
and
L.
Bartell
,
J. Phys. Chem. B
105
,
11605
(
2001
).
35.
X.
Bai
and
M.
Li
,
J. Chem. Phys.
122
,
224510
(
2005
).
36.
N. H.
Fletcher
,
J. Chem. Phys.
29
(
3
),
572
(
1958
).
37.
U.
Landman
,
W. D.
Luedtke
,
R. N.
Barnett
,
C. L.
Cleveland
, and
M. W.
Ribarsky
,
Phys. Rev. Lett.
56
(
2
),
155
(
1986
).
38.
W. D.
Luedtke
,
U.
Landman
,
M. W.
Ribarsky
,
R. N.
Barnett
, and
C. L.
Cleveland
,
Phys. Rev. B
37
(
9
),
4647
(
1988
).
39.
B. B.
Laird
,
R. L.
Davidchack
,
Y.
Yang
, and
M.
Asta
,
J. Chem. Phys.
131
,
114110
(
2009
).
40.
J. J.
Hoyt
,
M.
Asta
, and
A.
Karma
,
Phys. Rev. Lett.
86
,
5530
(
2001
).
41.
J. Q.
Broughton
and
G. H.
Gilmer
,
J. Chem. Phys.
84
,
5759
(
1986
).
42.
R. L.
Davidchack
and
B. B.
Laird
,
Phys. Rev. Lett.
85
,
4751
(
2000
).
43.
T.
Frolov
and
Y.
Mishin
,
J. Chem. Phys.
131
,
054702
(
2009
).
44.
T.
Frolov
and
Y.
Mishin
,
Phys. Rev. B
82
,
174114
(
2010
).
45.
T.
Frolov
and
Y.
Mishin
,
Phys. Rev. B
82
,
174113
(
2010
).
46.
F.
Celestini
and
J.
Debierre
,
Phys. Rev. E
65
,
041605
(
2002
).
You do not currently have access to this content.