Since reports that silicon nanocrystals (Si-NCs) can exhibit direct transition emission, the silicon laser field is at a juncture where the importance of this discovery needs to be evaluated. Most theoretical models predicted a monotonic increase in the bandgap and experimental information currently available on the electronic structure at the Γ valley of these promising materials is circumstantial as it is obtained from emission measurements where competing non-radiative relaxation and recombination processes only provide an incomplete picture of the electronic structure of Si-NCs. Optical absorption, the most immediate probe of the electronic structure beyond the band-edges, showing the evolution of the Γ valley states with nanocrystal size has not been measured. Here, we show such measurements, performed with high dynamic range, allowing us to observe directly the effect of crystal size on the Γ valley splitting far above the band-edges. We show that the splitting is 100 s of meV more pronounced than predicted by pseudo potential calculations and Luttinger-Kohn model. We also show that ultrafast red-shifting emission can be observed in plasma enhanced chemical vapor deposition prepared Si-NCs.

1.
L.
Pavesi
,
L.
Dal Negro
,
C.
Mazzoleni
,
G.
Franzo
, and
F.
Priolo
, “
Optical gain in silicon nanocrystals
,”
Nature
408
,
440
444
(
2000
).
2.
L. T.
Canham
, “
Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers
,”
Appl. Phys. Lett.
57
,
1046
1048
(
1990
).
3.
L.
Dal Negro
,
M.
Cazzanelli
,
L.
Pavesi
,
S.
Ossicini
,
D.
Pacifici
,
G.
Franzò
,
F.
Priolo
, and
F.
Iacona
, “
Dynamics of stimulated emission in silicon nanocrystals
,”
Appl. Phys. Lett.
82
,
4636
4638
(
2003
).
4.
F.
Iacona
,
C.
Bongiorno
,
C.
Spinella
,
S.
Boninelli
, and
F.
Priolo
, “
Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiO[sub x] films
,”
J. Appl. Phys.
95
,
3723
3732
(
2004
).
5.
V. A.
Belyakov
,
V. A.
Burdov
,
R.
Lockwood
, and
A.
Meldrum
, “
Silicon nanocrystals: Fundamental theory and implications for stimulated emission
,”
Adv. Opt. Technol.
2008
,
279502
.
6.
A.
Polman
and
R. G.
Elliman
, “
Optical gain from silicon nanocrystals—A critical perspective
,” in
Towards the First Silicon Laser
, edited by
L.
Pavesi
 et al (
Kluwer Academic Publishers
,
2003
), pp.
209
222
.
7.
R. D.
Kekatpure
and
M. L.
Brongersma
, “
Fundamental photophysics and optical loss processes in Si-nanocrystal-doped microdisk resonators
,”
Phys. Rev. A
78
,
023829
(
2008
).
8.
R. D.
Kekatpure
and
M. L.
Brongersma
, “
Quantification of free-carrier absorption in silicon nanocrystals with an optical microcavity
,”
Nano Lett.
8
,
3787
3793
(
2008
).
9.
L.
Tsybeskov
,
Ju. V.
Vandyshev
, and
P. M.
Fauchet
, “
Blue emission in porous silicon: Oxygen-related photoluminescence
,”
Phys. Rev. B
49
,
7821
R
(
1994
).
10.
K.
Luterová
,
I.
Mikulskas
,
R.
Tomasiunas
,
D.
Muller
,
J.-J.
Grob
,
J.-L.
Rehspringer
, and
B.
Hönerlage
, “
Stimulated emission in blue-emitting Si-implanted SiO2 films
,”
J. Appl. Phys.
91
,
2896
2900
(
2002
).
11.
J. D.
Holmes
 et al, “
Highly luminescent silicon nanocrystals with discrete optical transitions
,”
J. Am. Chem. Soc.
123
,
3743
3748
(
2001
).
12.
G.
Allan
and
C.
Delerue
, “
Fast relaxation of hot carriers by impact ionization in semiconductor nanocrystals: Role of defects
,”
Phys. Rev. B
79
,
195324
(
2009
).
13.
F.
Trojánek
,
K.
Neudert
,
M.
Bittner
, and
P.
Malý
, “
Picosecond photoluminescence and transient absorption in silicon nanocrystals
,”
Phys. Rev. B
72
,
075365
(
2005
).
14.
M. V. R.
Krishna
and
R. A.
Friesner
, “
Prediction of anomalous redshift in semiconductor clusters
,”
J. Chem. Phys.
96
,
873
877
(
1992
).
15.
A. J.
Williamson
,
J. C.
Grossman
,
R.
Hood
,
A.
Puzder
, and
G.
Galli
, “
Quantum Monte Carlo calculations of nanostructure optical gaps: Application to silicon quantum dots
,”
Phys. Rev. Lett.
89
,
196803
(
2002
).
16.
F.
Trani
,
G.
Cantele
,
D.
Ninno
, and
G.
Iadonisi
, “
Tight-binding calculation of the optical absorption cross section of spherical and ellipsoidal silicon nanocrystals
,”
Phys. Rev. B
72
,
075423
(
2005
).
17.
V.
Vinciguerra
,
G.
Franzo
,
F.
Priolo
,
F.
Iacona
, and
C.
Spinella
, “
Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO[sub 2] superlattices
,”
J. Appl. Phys.
87
,
8165
8173
(
2000
).
18.
W. B.
Jackson
,
N. M.
Amer
,
A. C.
Boccara
, and
D.
Fournier
, “
Photothermal deflection spectroscopy and detection
,”
Appl. Opt.
20
,
1333
1344
(
1981
).
19.
D.
Timmerman
and
T.
Gregorkiewicz
, “
Power-dependent spectral shift of photoluminescence from ensembles of nanocrystals
,”
Nanoscale Res. Lett.
7
,
389
(
2012
).
20.
C.
Garcia
,
B.
Garrido
,
P.
Pellegrino
,
R.
Ferre
,
J. A.
Moreno
,
J. R.
Morante
,
L.
Pavesi
, and
M.
Cazzanelli
, “
Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in SiO2
,”
Appl. Phys. Lett.
82
,
1595
1597
(
2003
).
21.
A. A.
Prokofieva
,
A. S.
Moskalenko
,
I. N.
Yassievicha
,
W. D. A. M.
de Boer
,
D.
Timmerman
,
H.
Zhang
,
W. J.
Buma
, and
T.
Gregorkiewicz
, “
Direct bandgap optical transitions in Si nanocrystals
,”
JETP Lett.
90
(
12
),
758
762
(
2009
).
22.
W. D. A. M.
de Boer
,
D.
Timmerman
,
K.
Dohnalová
,
I. N.
Yassievich
,
H.
Zhang
,
W. J.
Buma
, and
T.
Gregorkiewicz
, “
Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals
,”
Nat. Nanotechnol.
5
,
878
884
(
2010
).
23.
V. I.
Klimov
,
Ch. J.
Schwarz
,
D. W.
McBranch
, and
C. W.
White
, “
Initial carrier relaxation dynamics in ion-implanted Si nanocrystals: Femtosecond transient absorption study
,”
Appl. Phys. Lett.
73
,
2603
2605
(
1998
).
24.
A.
Tewary
,
R. D.
Kekatpure
, and
M. L.
Brongersma
, “
Controlling defect and Si nanoparticle luminescence from silicon oxynitride films with CO2 laser annealing
,”
Appl. Phys. Lett.
88
,
093114
093114
(
2006
).
25.
H.
Xia
,
Y. L.
He
,
L. C.
Wang
,
W.
Zhang
,
X. N.
Liu
,
X. K.
Zhang
,
D.
Feng
, and
H. E.
Jackson
, “
Phonon mode study of Si nanocrystals using micro-Raman spectroscopy
,”
J. Appl. Phys.
78
,
6705
6708
(
1995
).
You do not currently have access to this content.