By micromagnetic simulation, we investigated the interaction between propagating spin wave (or magnonic) and a 360° domain wall in a nanostrip. It is found that propagating spin wave can drive a 360° domain wall motion, and the velocity and direction are closely related to the transmission coefficient of the spin wave of the domain wall. When the spin wave passes through the domain wall completely, the 360° domain wall moves toward the spin wave source. When the spin wave is reflected by the domain wall, the 360° domain wall moves along the spin wave propagation direction. Moreover, when the frequency of the spin wave is coincident with that of the 360° domain wall normal mode, the 360° domain wall velocity will be resonantly enhanced no matter which direction the 360 DW moves along. On the other hand, when the spin wave is reflected from the moving 360° domain wall, we observed the Doppler effect clearly. After passing through a 360° domain wall, the phase of the spin wave is changed, and the phase shift is related to the frequency. Nevertheless, phase shift could be manipulated by the number of 360° domain walls that spin wave passing through.

1.
M.
Franchin
,
T.
Fischbacher
,
G.
Bordignon
,
P.
de Groot
, and
H.
Fangohr
,
Phys. Rev. B
78
,
054447
(
2008
).
2.
M.
Hayashi
,
L.
Thomas
,
R.
Moriya
,
C.
Rettner
, and
S. S. P.
Parkin
,
Science
320
,
209
(
2008
).
3.
S. S. P.
Parkin
,
M.
Hayashi
, and
L.
Thomas
,
Science
320
,
190
(
2008
).
4.
A.
Vanhaverbeke
and
M.
Viret
,
Phys. Rev. B
75
,
024411
(
2007
).
5.
S.
Zhang
and
Z.
Li
,
Phys. Rev. Lett.
93
,
127204
(
2004
).
6.
D. A.
Allwood
,
G.
Xiong
,
C. C.
Faulkner
,
D.
Atkinson
,
D.
Petit
, and
R. P.
Cowburn
,
Science
309
,
1688
(
2005
).
7.
C. Y.
You
,
I. M.
Sung
, and
B. K.
Joe
,
Appl. Phys. Lett.
89
,
222513
(
2006
).
8.
C. Y.
You
and
S. S.
Ha
,
Appl. Phys. Lett.
91
,
022507
(
2007
).
9.
J. B.
Wang
,
C. P.
Mu
,
W. W.
Wang
,
B.
Zhang
,
H. Y.
Xia
,
Q. F.
Liu
, and
D. S.
Xue
,
Appl. Phys. Lett.
99
,
032502
(
2011
).
10.
C.
Mu
,
S.
Hu
,
J.
Wang
, and
T.
Kimura
,
Appl. Phys. Lett.
103
,
132408
(
2013
).
11.
D. S.
Han
,
S. K.
Kim
,
J. Y.
Lee
,
S. J.
Hermsdoerfer
,
H.
Schultheiss
,
B.
Leven
, and
B.
Hillebrands
,
Appl. Phys. Lett.
94
,
112502
(
2009
).
12.
M.
Covington
,
T. M.
Crawford
, and
G. J.
Parker
,
Phys. Rev. Lett.
89
,
237202
(
2002
).
13.
R.
Wieser
,
E. Y.
Vedmedenko
, and
R.
Wiesendanger
,
Phys. Rev. B
81
,
024405
(
2010
).
14.
M.
Yan
,
C.
Andreas
,
A.
Kakay
,
F.
Garcia-Sanchez
, and
R.
Hertel
,
Appl. Phys. Lett.
99
,
122505
(
2011
).
15.
A. V.
Chumak
,
A. A.
Serga
,
M. B.
Jungfleisch
,
R.
Neb
,
D. A.
Bozhko
,
V. S.
Tiberkevich
, and
B.
Hillebrands
,
Appl. Phys. Lett.
100
,
082405
(
2012
).
16.
X. S.
Wang
,
P.
Yan
,
Y. H.
Shen
,
G. E. W.
Bauer
, and
X. R.
Wang
,
Phys. Rev. Lett.
109
,
167209
(
2012
).
17.
R.
Hertel
,
W.
Wulfhekel
, and
J.
Kirschner
,
Phys. Rev. Lett.
93
,
257202
(
2004
).
18.
C.
Bayer
,
H.
Schultheiss
,
B.
Hillebrands
, and
R. L.
Stamps
,
IEEE Trans. Magn.
41
,
3094
(
2005
).
19.
D. D.
Stancil
,
B. E.
Henty
,
A. G.
Cepni
, and
J. P.
Van't Hof
,
Phys. Rev. B
74
,
060404
(
2006
).
20.
K. S.
Lee
and
S. K.
Kim
,
J. Appl. Phys.
104
,
053909
(
2008
).
21.
V.
Vlaminck
and
M.
Bailleul
,
Science
322
,
410
(
2008
).
22.
Y. L.
Maho
,
J. V.
Kim
, and
G.
Tatara
,
Phys. Rev. B
79
,
174404
(
2009
).
23.
S. M.
Seo
,
K. J.
Lee
,
H.
Yang
, and
T.
Ono
,
Phys. Rev. Lett.
102
,
147202
(
2009
).
24.
M.
Jamali
,
H.
Yang
, and
K. J.
Lee
,
Appl. Phys. Lett.
96
,
242501
(
2010
).
25.
Y.
Kajiwara
,
K.
Harii
,
S.
Takahashi
,
J.
Ohe
,
K.
Uchida
,
M.
Mizuguchi
,
H.
Umezawa
,
H.
Kawai
,
K.
Ando
,
K.
Takanashi
,
S.
Maekawa
, and
E.
Saitoh
,
Nature
464
,
262
(
2010
).
26.
P. E.
Roy
,
T.
Trypiniotis
, and
C. H. W.
Barnes
,
Phys. Rev. B
82
,
134411
(
2010
).
27.
M.
Zhu
,
C. L.
Dennis
, and
R. D.
McMichael
,
Phys. Rev. B
81
,
140407
(
2010
).
28.
J.
Yoon
,
C. Y.
You
,
Y.
Jo
,
S. Y.
Park
, and
M. H.
Jung
,
J. Magn. Magn. Mater.
325
,
52
(
2013
).
29.
S. M.
Seo
,
H. W.
Lee
,
H.
Kohno
, and
K. J.
Lee
,
Appl. Phys. Lett.
98
,
012514
(
2011
).
30.
J. S.
Kim
,
M.
Stark
,
M.
Klaui
,
J.
Yoon
,
C. Y.
You
,
L.
Lopez-Diaz
, and
E.
Martinez
,
Phys. Rev. B
85
,
174428
(
2012
).
31.
Y.
Urazuka
,
Y. W.
Cao
,
T.
Tanaka
, and
K.
Matsuyama
,
IEEE Trans. Magn.
48
,
3922
(
2012
).
32.
X. G.
Wang
,
G. H.
Guo
,
Y. Z.
Nie
,
G. F.
Zhang
, and
Z. X.
Li
,
Phys. Rev. B
86
,
054445
(
2012
).
33.
X. G.
Wang
,
G. H.
Guo
,
G. F.
Zhang
,
Y. Z.
Nie
, and
Q. L.
Xia
,
Appl. Phys. Lett.
102
,
132401
(
2013
).
34.
X. G.
Wang
,
G. H.
Guo
,
G. F.
Zhang
,
Y. Z.
Nie
, and
Q. L.
Xia
,
J. Appl. Phys.
113
,
213904
(
2013
).
35.
P.
Yan
,
X. S.
Wang
, and
X. R.
Wang
,
Phys. Rev. Lett.
107
,
177207
(
2011
).
36.
D.
Hinzke
and
U.
Nowak
,
Phys. Rev. Lett.
107
,
027205
(
2011
).
37.
C. B.
Muratov
and
V. V.
Osipov
,
J. Appl. Phys.
104
,
053908
(
2008
).
38.
A. L. G.
Oyarce
,
T.
Trypiniotis
,
P. E.
Roy
, and
C. H. W.
Barnes
,
Phys. Rev. B
87
,
174408
(
2013
).
39.
S. F.
Zhang
,
Q. Y.
Zhu
,
C. P.
Mu
,
Y.
Zhang
,
Q. F.
Liu
, and
J. B.
Wang
,
J. Magn. Magn. Mater.
347
,
124
(
2013
).
40.
A. L. G.
Oyarce
,
Y.
Nakatani
, and
C. H. W.
Barnes
,
Phys. Rev. B
87
,
214403
(
2013
).
41.
M. J.
Donahue
and
D. G.
Porter
, OOMMF User's Guide, version 1.0, Interagency Report No. NISTIR 6376,
National Institute of Standards and Technology
, Gaithersburg, MD,
1999
, see (http://math.nist.gov/oommf /).
42.
K. Y.
Guslienko
,
R. W.
Chantrell
, and
A. N.
Slavin
,
Phys. Rev. B
68
,
024422
(
2003
).
43.
S.
Choi
,
K. S.
Lee
,
K. Y.
Guslienko
, and
S. K.
Kim
,
Phys. Rev. Lett.
98
,
087205
(
2007
).
44.
K.
Nagai
,
Y.
Cao
,
T.
Tanaka
, and
K.
Matsuyama
,
J. Appl. Phys.
111
,
07D130
(
2012
).
You do not currently have access to this content.