Shallow embedding of C+ ions (<2 nm) into commercial CoCrPt-based magnetic media using the filtered cathodic vacuum arc technique improves its anti-oxidation and anti-wear properties which are comparable to the conventionally used thicker carbon overcoats of ∼3 nm. The next generation L10 FePt media subjected to low energy embedment of C+ ions have the potential to provide reduced magnetic spacing along with smaller and thermally stable grains, which is pivotal for achieving areal densities beyond 1 Tb/in.2 However, the impact of low energy C+ ions embedding on the magnetics of FePt media is not known. Here, the magnetic properties of L10 FePt, post-shallow C+ ion embedment at 350 eV, were investigated. It was observed that bombardment of C+ ions in the 5 nm thick FePt films produced a monumental reduction of ∼86% in the out-of-plane coercivity value. Increasing the FePt film thickness did not significantly suppress the impact of these C+ ions on the media. Structural and elemental analyses attributed this alteration caused in the magnetic properties of the well-ordered FePt films to the penetration of >2 nm by the C+ ions into the FePt film. The media's crystallography with respect to the size and direction of the incoming ions has emerged to be accountable for the deeper distribution of the C+ ions and the associated widespread cascade damages within the magnetic layer. The consequences of low energy C+ ions embedding to attain high storage densities using high anisotropy L10 FePt media are discussed.

1.
H. J.
Richter
,
J. Phys. D: Appl. Phys.
40
,
R149
(
2007
).
2.
M. H.
Kryder
,
E. C.
Gage
,
T. W.
McDaniel
,
W. A.
Challener
,
R. E.
Rottmayer
,
G.
Ju
,
Y. T.
Hsia
, and
M. F.
Erden
,
Proc. IEEE
96
,
1810
(
2008
).
3.
R. E.
Rottmayer
 et al,
IEEE Trans. Magn.
42
,
2417
(
2006
).
4.
K. R.
Coffey
,
M. A.
Parker
, and
K. J.
Howard
,
Trans. Magn.
31
,
2737
(
1995
).
5.
J.-U.
Thiele
,
L.
Folks
,
M. F.
Toney
, and
D. K.
Weller
,
J. Appl. Phys.
84
,
5686
(
1998
).
6.
B. C.
Lim
,
J. S.
Chen
, and
G. M.
Chow
,
IEEE Trans. Magn.
42
,
3017
(
2006
).
7.
S. C.
Chena
,
P. C.
Kuo
,
C. Y.
Chou
, and
A. C.
Sun
,
J. Appl. Phys.
97
,
10N107
(
2005
).
8.
J.
Chen
,
C.
Sun
, and
G. M.
Chow
,
Int. J. Product Development
5
,
238
(
2005
).
9.
B.
Bian
,
D. E.
Laughlin
,
K.
Sato
, and
Y.
Hirotsu
,
J. Appl. Phys.
87
,
6962
(
2000
).
10.
Y.
Peng
,
J.-G.
Zhu
, and
D. E.
Laughlin
,
J. Appl. Phys.
99
,
08F907
(
2006
).
11.
S.
Kundu
,
N.
Gaur
,
M. S. M.
Saifullah
,
H.
Yang
, and
C. S.
Bhatia
,
J. Appl. Phys.
112
,
113916
(
2012
).
12.
A. C.
Ferrari
,
Surf. Coat. Technol.
180–181
,
190
(
2004
).
13.
P.
Bernhard
,
Ch.
Ziethen
,
R.
Ohr
,
H.
Hilgers
, and
G.
Schönhense
,
Surf. Coat. Technol.
180–181
,
621
(
2004
).
14.
L.
Wu
,
Nanotechnology
18
,
215702
(
2007
).
15.
H.-S.
Zhang
and
K.
Komvopoulos
,
J. Appl. Phys.
106
,
093504
(
2009
).
16.
E.
Rismani
,
M. A.
Samad
,
S. K.
Sinha
,
R.
Yeo
,
H.
Yang
, and
C. S.
Bhatia
,
Appl. Phys. Lett.
101
,
191601
(
2012
).
17.
A.
Perumal
,
Y. K.
Takahashi
, and
K.
Hono
,
Appl. Phys. Express
1
,
101301
(
2008
).
18.
T.
Bublat
and
D.
Goll
,
J. Appl. Phys.
108
,
113910
(
2010
).
19.
M. A.
Samad
,
S.
Xiong
,
L.
Pan
,
H.
Yang
,
S. K.
Sinha
,
D. B.
Bogy
, and
C. S.
Bhatia
,
IEEE Trans. Magn.
48
,
1807
(
2012
).
20.
S. D.
Granz
and
M. H.
Kryder
,
J. Magn. Magn. Mater.
324
,
287
(
2012
).
21.
J. W.
Mayer
,
L.
Eriksson
, and
J. A.
Davies
,
Ion Implantation in Semiconductors
(
Academic Press
,
New York
,
1970
).
22.
J. F.
Ziegler
and
R. F.
Lever
,
Appl. Phys. Lett.
46
,
358
(
1985
).
23.
C.
Liua
,
T. J.
Klemmera
,
N.
Shuklaa
,
X.
Wua
,
D.
Wellera
,
M.
Tanaseb
, and
D.
Laughlin
,
J. Magn. Magn. Mater.
266
,
96
(
2003
).
24.
R. G.
Wilson
and
G. R.
Brewer
,
Ion Beams: With Application to Ion Implantation
(
John Wiley & Sons
,
New York
,
1973
).
25.
M.
Nastasi
,
J.
Mayer
, and
J. K.
Hirvonen
,
Ion-Solid Interactions: Fundamentals and Applications
(
Cambridge University Press
,
2013
).
26.
M. I.
Norgett
,
M. T.
Robinson
, and
I. M.
Torrens
,
Nucl. Eng. Des.
33
,
50
(
1975
).
27.
M. T.
Robinson
and
I. M.
Torrens
,
Phys. Rev. B
9
,
5008
(
1974
).
28.
G. H.
Kinchin
and
R. S.
Pease
,
Rep. Prog. Phys.
18
,
1
(
1955
).
29.
ASTM E521-89
,
Neutron Radiation Damage Simulation by Charged-Particle Irradiation
(
ASTM Book of Standards 12.02
,
1990
).
30.
H. O.
Pierson
,
Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Applications
(
William Andrew
,
1996
).
31.
N.
Gaur
,
S. N.
Piramanayagam
,
S. L.
Maurer
,
R. W.
Nunes
,
S.
Steen
,
H.
Yang
, and
C. S.
Bhatia
,
J. Phys. D: Appl. Phys.
44
,
365001
(
2011
).
32.
N.
Gaur
,
S.
Kundu
,
S. N.
Piramanayagam
,
S. L.
Maurer
,
H. K.
Tan
,
S. K.
Wong
,
S. E.
Steen
,
H.
Yang
, and
C. S.
Bhatia
,
Sci. Rep.
3
,
1907
(
2013
).
33.
M. A.
Samad
,
E.
Rismani
,
H.
Yang
,
S. K.
Sinha
, and
C. S.
Bhatia
,
Tribol. Lett.
43
,
247
(
2011
).
34.
See supplementary material at http://dx.doi.org/10.1063/1.4860295 for better understanding of improved tribological properties with low energy C+ ion embedment. Diffusion of C+ ions through the entire depth of FePt layer, using TEM equipped with EDX, has also been mapped. Radii calculation of interstitial sites in FePt has been provided in detail to show that the C+ ions cause lattice disorder while attempting to occupy these sites.

Supplementary Material

You do not currently have access to this content.