As-grown and pre-oxidized silicon carbide (SiC) samples of polytype 4H have been annealed at temperatures up to 1950 °C for 10 min duration using inductive heating, or at 2000 °C for 30 s using microwave heating. The samples consisted of a n-type high-purity epitaxial layer grown on 4° off-axis ⟨0001⟩ n+-substrate and the evolution of the carbon vacancy (VC) concentration in the epitaxial layer was monitored by deep level transient spectroscopy via the characteristic Z1/2 peak. Z1/2 appears at ∼0.7 eV below the conduction band edge and arises from the doubly negative charge state of VC. The concentration of VC increases strongly after treatment at temperatures ≥ 1600 °C and it reaches almost 1015 cm−3 after the inductive heating at 1950 °C. A formation enthalpy of ∼5.0 eV is deduced for VC, in close agreement with recent theoretical predictions in the literature, and the entropy factor is found to be ∼5 k (k denotes Boltzmann's constant). The latter value indicates substantial lattice relaxation around VC, consistent with VC being a negative-U system exhibiting considerable Jahn-Teller distortion. The microwave heated samples show evidence of non-equilibrium conditions due to the short duration used and display a lower content of VC than the inductively heated ones. Finally, concentration-versus-depth profiles of VC favour formation in the “bulk” of the epitaxial layer as the prevailing process and not a Schottky type process at the surface.

1.
W. J.
Choyke
,
H.
Matsunami
, and
G.
Pensl
,
Silicon Carbide: Recent Major Advances, Springer Series: Advanced Texts in Physics
(
Springer-Verlag
,
Berlin
,
2004
).
2.
T.
Kimoto
,
A.
Itoh
,
H.
Matsunami
,
S.
Sridhara
,
L. L.
Clemen
,
R. P.
Devaty
,
W. J.
Choyke
,
T.
Dalibor
,
C.
Peppermüller
, and
G.
Pensl
,
Appl. Phys. Lett.
67
,
2833
(
1995
).
3.
T.
Dalibor
,
G.
Pensl
,
T.
Kimoto
,
H.
Matsunami
,
S.
Sridhara
,
R. T.
Devaty
, and
W. J.
Choyke
,
Diamond Relat. Mater.
6
,
1333
(
1997
).
4.
C. G.
Hemmingsson
,
N. T.
Son
,
O.
Kordina
,
E.
Janzén
,
J. L.
Lindström
,
S.
Savage
, and
N.
Nordell
,
J. Appl. Phys.
81
,
6155
(
1997
).
5.
J. P.
Doyle
,
M. K.
Linnarsson
,
P.
Pellegrino
,
N.
Keskitalo
,
B. G.
Svensson
,
A.
Schöner
,
N.
Nordell
, and
J. L.
Lindström
,
J. Appl. Phys.
84
,
1354
(
1998
).
6.
C. G.
Hemmingsson
,
N. T.
Son
,
O.
Kordina
,
A.
Ellison
,
J.
Zhang
, and
E.
Janzén
,
Phys. Rev. B
58
,
R10119
(
1998
).
7.
T.
Hiyoshi
and
T.
Kimoto
,
Appl. Phys. Express
2
,
41101
(
2009
);
T.
Hiyoshi
and
T.
Kimoto
,
Appl. Phys. Express
2
,
91101
(
2009
).
8.
L. S.
Løvlie
and
B. G.
Svensson
,
Appl. Phys. Lett.
98
,
052108
(
2011
);
L. S.
Løvlie
and
B. G.
Svensson
,
Phys. Rev. B
86
,
075205
(
2012
).
9.
G.
Alfieri
,
E. V.
Monakhov
,
B. G.
Svensson
, and
M. K.
Linnarsson
,
J. Appl. Phys.
98
,
043518
(
2005
).
10.
B.
Zippelius
,
J.
Suda
, and
T.
Kimoto
,
Mater. Sci. Forum
717–720
,
247
(
2012
).
11.
N. T.
Son
,
X. T.
Trinh
,
L. S.
Løvlie
,
B. G.
Svensson
,
K.
Kawahara
,
J.
Suda
,
T.
Kimoto
,
T.
Umeda
,
J.
Isoya
,
T.
Makino
,
T.
Ohshima
, and
E.
Janzén
,
Phys. Rev. Lett.
109
,
187603
(
2012
).
12.
R.
Nipoti
,
R.
Scaburri
,
A.
Hallén
, and
A.
Parisini
,
J. Mater. Res.
28
,
17
(
2013
).
13.
R.
Nipoti
,
A.
Nath
,
M. V.
Rao
,
A.
Hallén
,
A.
Carnera
, and
Y.-L.
Tian
,
Appl. Phys. Express
4
,
111301
(
2011
).
14.
J. M.
Bluet
,
J.
Pernot
,
J.
Camassel
,
S.
Contreras
,
J. L.
Robert
,
J. F.
Michaud
, and
T.
Billon
,
J. Appl. Phys.
88
,
1971
(
2000
).
15.
Y.
Negoro
,
T.
Kimoto
,
H.
Matsunami
,
F.
Schmid
, and
G.
Pensl
,
J. Appl. Phys.
96
,
4916
(
2004
).
16.
M. K.
Linnarsson
,
M. S.
Janson
,
U.
Zimmermann
,
B. G.
Svensson
,
P. O. Å.
Persson
,
L.
Hultman
,
J.
Wong-Leung
,
S.
Karlsson
,
A.
Schöner
,
H.
Bleichner
, and
E.
Olsson
,
Appl. Phys. Lett.
79
,
2016
(
2001
).
17.
S. G.
Sundaresan
,
M. V.
Rao
,
Y.-L.
Tian
,
M.
Ridgway
,
J. A.
Schreifels
, and
J.
Kopanski
,
J. Appl. Phys.
101
,
073708
(
2007
).
18.
T.
Kimoto
,
G.
Feng
,
T.
Hiyoshi
,
K.
Kawahara
,
M.
Noborio
, and
J.
Suda
,
Mater. Sci. Forum
645–648
,
645
(
2010
).
19.
J.
Wong-Leung
,
M. S.
Janson
, and
B. G.
Svensson
,
J. Appl. Phys.
93
,
8914
(
2003
).
20.
21.
B. G.
Svensson
,
K.-H.
Rydén
, and
B. M. S.
Lewerentz
,
J. Appl. Phys.
66
,
1699
(
1989
).
22.
L.
Storasta
,
J. P.
Bergman
,
E.
Janzén
, and
A.
Henry
,
J. Appl. Phys.
96
,
4909
(
2004
).
23.
K.
Danno
and
T.
Kimoto
,
J. Appl. Phys.
100
,
113728
(
2006
).
24.
J.
Wong-Leung
and
B. G.
Svensson
,
Appl. Phys. Lett.
92
,
142105
(
2008
).
25.
G.
Alfieri
and
T.
Kimoto
,
Mater. Sci. Forum
740–742
,
645
(
2013
).
26.
J. P.
Biersack
and
L. G.
Haggmark
,
Nucl. Instrum. Methods
174
,
257
(
1980
);
J. F.
Ziegler
,
J. P.
Biersack
, and
U.
Littmark
, in
The Stopping and Range of Ions in Solids
, edited by
J. F.
Ziegler
(
Pergamon
,
New York
,
1985
), Vol. 1.
27.
B. G.
Svensson
,
C.
Jagadish
,
A.
Hallén
, and
J.
Lalita
,
Phys. Rev. B
55
,
10498
(
1997
).
28.
L. C.
Kimerling
,
J. Appl. Phys.
45
,
1839
(
1974
).
29.
L. S.
Løvlie
and
B. G.
Svensson
, “
Identification of acceptor- and donor-like deep states in SiC using non-uniform defect-versus-depth distributions
” (to be published).
30.
E. V.
Monakhov
,
J.
Wong-Leung
,
A. Y.
Kuznetsov
,
C.
Jagadish
, and
B. G.
Svensson
,
Phys. Rev. B
65
,
245201
(
2002
).
31.
S. B.
Zhang
and
J. E.
Northrup
,
Phys. Rev. Lett.
67
,
2339
(
1991
).
32.
A.
Zywietz
,
J.
Furthmüller
, and
F.
Bechstedt
,
Phys. Rev. B
59
,
15166
(
1999
).
33.
L.
Torpo
,
M.
Marlo
,
T. E. M.
Staab
, and
R. M.
Nieminen
,
J. Phys. Condens. Matter
13
,
6203
(
2001
).
34.
M.
Bockstedte
,
A.
Mattausch
, and
O.
Pankratov
,
Phys. Rev. B
68
,
205201
(
2003
).
35.
T.
Hornos
,
A.
Gali
, and
B. G.
Svensson
,
Mater. Sci. Forum
679–680
,
261
(
2011
).
36.
T.
Kimoto
, private communication (
2013
).
You do not currently have access to this content.