GeTe is a narrow-band gap semiconductor, where Ge vacancies generate free charge carriers, holes, forming a self-dopant degenerate system with p-type conductivity, and serves as a base for high-performance multicomponent thermoelectric materials. There is a significant discrepancy between the electronic and thermal transport data for GeTe-based materials reported in the literature, which obscures the baseline knowledge and prevents a clear understanding of the effect of alloying GeTe with various elements. A comprehensive study including XRD, SEM, EDS, Seebeck coefficient, electrical resistivity, thermal conductivity, and 125Te NMR of several GeTe samples was conducted. Similar Seebeck coefficient and electrical resistivity are observed for all GeTe samples used showing that the concentration of Ge vacancies generating charge carriers is constant along the ingot. Very short 125Te NMR spin-relaxation time agrees well with high carrier concentration obtained from the Hall effect measurements. Our data show that at ∼700 K, GeTe has a very large power factor, 42 μWcm−1K−2, much larger than that of any high efficiency thermoelectric telluride at these temperatures. Electronic and thermal properties of GeTe are compared to PbTe, another well-known thermoelectric material, where free charge carriers, holes or electrons, are generated by vacancies on Pb or Te sites, respectively. Discrepancy in the data for GeTe reported in literature can be attributed to the variation in the Ge:Te ratio of solidified samples as well as to different conditions of measurements.

1.
J.
Akola
and
R. O.
Jones
,
Phys. Rev. Lett.
100
,
205502
(
2008
).
2.
E. F.
Steigmeier
and
G.
Harbeke
,
Solid State Commun.
8
,
1275
(
1970
).
3.
M. J.
Polking
,
M.-G.
Han
,
A.
Yourdkhani
,
V.
Petkov
,
C. F.
Kiselowski
,
V. V.
Volkov
,
Y.
Zhu
,
G.
Caruntu
,
A. P.
Alivisatos
, and
R.
Ramesh
,
Nature Mater.
11
,
700
(
2012
).
4.
R. A.
Hein
,
J. W.
Gibson
,
R.
Mazelsky
,
R. C.
Millerand
, and
J. K.
Hulm
,
Phys. Rev. Lett.
12
,
320
(
1964
).
5.
T.
Chattopadhyay
,
J. X.
Boucherle
, and
H. G.
von Schnering
,
J. Phys. C
20
,
1431
(
1987
).
6.
H. F.
Hammann
,
M.
O'Boyle
,
Y. C.
Martin
,
M.
Rooks
, and
H. K.
Wiskramasinghe
,
Nature Mater.
5
,
383
(
2006
).
7.
M.
Wuttig
,
D.
Lüsebrink
,
D.
Wamwangi
,
W.
Welnic
,
M.
Gilleßssen
, and
R.
Dobroiwski
,
Nature Mater.
6
,
122
(
2007
).
9.
M. L.
Cohen
,
Y.
Tung
, and
P. B.
Allen
,
J. Physique Colloque
29
(
11–12
),
C4
163
(
1968
).
10.
D. H.
Damon
,
M. S.
Lubeli
, and
R. M.
Mazelsky
,
J. Phys. Chem. Solids
28
,
520
(
1967
).
11.
N. V.
Kolomoets
,
E. Y.
Lev
, and
L. M.
Sysoeva
,
Sov. Phys. Solid State
5
,
2101
(
1964
).
12.
N. V.
Kolomoets
,
E. Y.
Lev
, and
L. M.
Sysoeva
,
Sov. Phys. Solid State
6
,
551
(
1964
).
13.
A. H.
Edwards
,
A. C.
Pineda
,
P. A.
Schultz
,
M. G.
Martin
,
A. P.
Thompson
,
H. P.
Hjamarson
, and
C. J.
Umrigar
,
Phys. Rev. B
73
,
045210
(
2006
).
14.
E. A.
Skrabek
and
D. S.
Trimmer
, U.S. Patent No. 3945855 (Issued: March 23, 1976).
15.
E. A.
Skrabek
and
D. S.
Trimmer
,
in CRC Handbook of Thermoelectrics
, edited by
D. M.
Rowe
(
CRC Press LLC
,
1995
), Chap. 22.
16.
M. N.
Schneider
,
T.
Rosenthal
,
C.
Stiewe
, and
O.
Oekler
,
Z. Kristallogr.
225
,
463
(
2010
).
17.
18.
G. J.
Snyder
and
E. S.
Toberer
,
Nature Mater.
7
,
105
(
2008
).
19.
S. H.
Yang
,
T. J.
Zhu
,
T.
Sun
,
J.
He
,
S. N.
Zhang
, and
X. B.
Zhao
,
Nanotechnology
19
,
245707
(
2008
).
20.
J. R.
Salvador
,
J.
Yang
,
X.
Shi
,
H.
Wang
, and
A. A.
Wereszczak
,
J. Solid State Chem.
182
,
2088
(
2009
).
21.
Y.
Gelbstein
,
O.
Ben-Yehuda
,
E.
Pinhas
,
T.
Edrei
,
Y.
Sadia
,
Z.
Dashevsky
, and
M. P.
Dariel
,
J. Electron. Mater.
38
,
1478
(
2009
).
22.
Y.
Gelbstein
,
B.
Daro
,
O.
Ben-Yehuda
,
Y.
Sadia
,
Z.
Dashevsky
, and
M. P.
Dariel
,
J. Electron. Mater.
39
,
2049
(
2010
).
23.
M. S.
Lubell
and
R.
Mazelskyl
,
J. Electrochem. Soc.
110
,
520
(
1963
).
24.
E. M.
Levin
,
B. A.
Cook
,
J. L.
Harringa
,
S. L.
Bud'ko
,
R.
Venkatasubramanian
, and
K.
Schmidt-Rohr
,
Adv. Funct. Mater.
21
,
441
(
2011
).
25.
E. M.
Levin
,
J. D.
Acton
, and
K.
Schmidt-Rohr
, APS March 2012 Meeting,
Boston, MA
, 27 February–2 March
2012
.
26.
E. M.
Levin
,
S. L.
Bud'ko
, and
K.
Schmidt-Rohr
,
Adv. Funct. Mater.
22
,
2766
(
2012
).
27.
L.
Zhang
,
W.
Wang
,
B.
Ren
, and
Y.
Yan
,
J. Electron. Mater.
40
,
1057
(
2011
).
28.
E. M.
Levin
,
B. A.
Cook
,
K.
Ahn
,
M. G.
Kanatzidis
, and
K.
Schmidt-Rohr
,
Phys. Rev. B
80
,
115211
(
2009
).
29.
P.
Villars
and
K.
Cenzual
, Pearson's Crystal Data: Crystal Structure Database for Inorganic Compounds (on CD-ROM), Release 2012/13, ASM International®, Materials Park, Ohio, USA.
30.
T.
Nonaka
,
G.
Ohbayashi
,
Y.
Toriumi
,
Y.
Mori
, and
H.
Hashimoto
,
Thin Solid Films
370
,
258
(
2000
).
31.
J.
Lee
,
Adv. Powder Technol.
23
,
731
(
2012
).
32.
K.
Koumoto
,
Y.
Wang
,
R.
Zhang
,
A.
Kosuga
, and
R.
Funahashi
,
Annu. Rev. Mater. Res.
40
,
363
(
2010
).
33.
T. G.
Edwards
,
E. L.
Gjersing
,
S.
Sen
,
S. C.
Currie
, and
B. G.
Aitken
,
J. Non-Cryst. Solids
357
,
3036
(
2011
).
34.
S.
Gorsse
,
P. B.
Pereira
,
R.
Decourt
, and
E.
Sellier
,
Chem. Mater.
22
,
988
(
2010
).
35.
S. P.
Li
,
J. Q.
Li
,
Q. B.
Wang
,
L.
Wang
,
F. S.
Liu
, and
W. Q.
Ao
,
Solid State Sci.
13
,
399
(
2011
).
36.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Brooks/Cole, Cengage Learning
,
1976
), p.
826
37.
S. N.
Girard
,
J.
He
,
X.
Zhou
,
D.
Shoemaker
,
C. M.
Jaworski
,
C.
Uher
,
V. P.
Dravid
,
J. P.
Heremans
, and
M. G.
Kanatzidis
,
J. Am. Chem. Soc.
133
,
16588
(
2011
).
39.
Y. I.
Ravich
,
in CRC Handbook of Thermoelectrics
, edited by
D. M.
Rowe
(
CRC Press LLC
,
1995
), Chap. 7.
40.
S. V.
Faleev
and
F.
Leonard
,
Phys. Rev. B
77
,
214304
(
2008
).
41.
J. P.
Heremans
,
C. M.
Trush
, and
D. T.
Morelli
,
J. Appl. Phys.
98
,
063703
(
2005
).
42.
N. J.
Parada
and
G. W.
Pratt
, Jr.
,
Phys. Rev. Lett.
22
,
180
(
1969
).
43.
D. T.
Morelli
,
V.
Jovovic
, and
J. P.
Heremans
,
Phys. Rev. Lett.
101
,
035901
(
2008
).
44.
J. R.
Sootsman
,
R. J.
Pcionek
,
H.
Kong
,
C.
Uher
, and
M. G.
Kanatzidis
,
Chem. Mater.
18
,
4993
(
2006
).
45.
Y.
Pei
,
X.
Shi
,
A.
LaLonde
,
H.
Wang
,
L.
Chen
, and
G. J.
Snyder
,
Nature
473
,
66
(
2011
).
46.
K.
Biswas
,
J.
He
,
Q.
Zhang
,
G.
Wang
,
C.
Uher
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
Nature Chem.
3
,
160
(
2011
).
47.
K.
Biswas
,
J.
He
,
I. D.
Blum
,
C. I.
Wu
,
T. P.
Hogan
,
D. N.
Seidman
,
V. P.
Dravid
, and
M. G.
Kanatzidisd
,
Nature
489
,
414
(
2012
).
48.
O.
Delaire
,
J.
Ma
,
K.
Marty
,
A. F.
May
,
M. A.
McGuire
,
M.-H.
Du
,
D. J.
Singh
,
A.
Podlesnyak
,
G.
Ehlers
,
M. D.
Lumsden
, and
B. C.
Sales
,
Nature Mater.
10
,
614
(
2011
).
You do not currently have access to this content.