The optical constants of tantalum pentoxide (Ta2O5) are determined in a broad spectral region from the visible to the far infrared. Ta2O5 films of various thicknesses from approximately 170 to 1600 nm are deposited using reactive magnetron sputtering on Si substrates. X-ray diffraction shows that the as-deposited films are amorphous, and annealing in air at 800 °C results in the formation of nanocrystalline Ta2O5. Ellipsometry is used to obtain the dispersion in the visible and near-infrared. Two Fourier-transform infrared spectrometers are used to measure the transmittance and reflectance at wavelengths from 1 to 1000 μm. The surface topography and microstructure of the samples are examined using atomic force microscopy, confocal microscopy, and scanning electron microscopy. Classical Lorentz oscillators are employed to model the absorption bands due to phonons and impurities. A simple model is introduced to account for light scattering in the annealed films, which contain micro-cracks. For the unannealed samples, an effective-medium approximation is used to take into account the adsorbed moisture in the film and a Drude free-electron term is also added to model the broad background absorption.

1.
S.-D.
Cho
and
K.-W.
Paik
,
Mater. Sci. Eng., B
67
,
108
(
1999
).
2.
C.
Chaneliere
,
J. L.
Autran
,
R. A. B.
Devine
, and
B.
Balland
,
Mater. Sci. Eng. R
22
,
269
322
(
1998
).
3.
F.
Rubio
,
J.
Denis
,
J. M.
Albella
, and
J. M.
Martinez-Duart
,
Thin Solid Films
90
,
405
(
1982
).
4.
A. J.
Waldorf
,
J. A.
Dobrowolski
,
B. T.
Sullivan
, and
L. M.
Plante
,
Appl. Opt.
32
,
5583
(
1993
).
5.
K.
Toki
,
K.
Kusakabe
,
T.
Odani
,
S.
Kobuna
, and
Y.
Shimizu
,
Thin Solid Films
281–282
,
401
(
1996
).
6.
E. B.
Franke
,
C. L.
Trimble
,
M.
Schubert
,
J. A.
Woollam
, and
J. S.
Hale
,
Appl. Phys. Lett.
77
,
930
(
2000
).
7.
J.
González
,
M. C.
Ruiz
,
J. B.
Rivarola
, and
D.
Pasquevich
,
J. Mater. Sci.
33
,
4173
(
1998
).
8.
C.
Chaneliere
,
S.
Four
,
J. L.
Autran
, and
R. A. B.
Devine
,
Microelectron. Reliab.
39
,
261
(
1999
).
9.
R. S.
Devan
,
W.-D.
Ho
,
S. Y.
Wu
, and
Y.-R.
Ma
,
J. Appl. Cryst.
43
,
498
(
2010
).
10.
E. E.
Khawaja
and
S. G.
Tomlin
,
Thin Solid Films
30
,
361
(
1975
).
11.
F.
Rubio
,
J. M.
Albella
,
J.
Denis
, and
J. M.
Martinez-Duart
,
J. Vac. Sci. Technol.
21
,
1043
(
1982
).
12.
G. A.
Al-Jumaily
and
S. M.
Edlou
,
Thin Solid Films
209
,
223
(
1992
).
13.
E.
Atanassova
,
G.
Aygun
,
R.
Turan
, and
T.
Babeva
,
J. Vac. Sci. Technol. A
24
,
206
(
2006
).
14.
J.
Zhou
,
D.
Luo
,
Y.
Li
, and
Z.
Liu
,
Int. J. Mod. Phys. B
23
,
5275
(
2009
).
15.
J. D.
Traylor Kruschwitz
and
W. T.
Pawlewicz
,
Appl. Opt.
36
,
2157
(
1997
).
16.
R.
Chandrasekharan
,
S.
Prakash
,
M. A.
Shannon
, and
R. I.
Masel
,
J. Heat Transfer
129
,
27
(
2007
).
17.
E.
Franke
,
C. L.
Trimble
,
M. J.
DeVries
,
J. A.
Woollam
,
M.
Schubert
, and
F.
Frost
,
J. Appl. Phys.
88
,
5166
(
2000
).
18.
E.
Franke
,
M.
Schubert
,
C. L.
Trimble
,
M. J.
DeVries
, and
J. A.
Woollam
,
Thin Solid Films
388
,
283
(
2001
).
19.
H.
Ono
,
Y.
Hosokawa
, and
K.
Shinoda
,
Thin Solid Films
381
,
57
(
2001
).
20.
T. J.
Bright
,
J. I.
Watjen
,
Z. M.
Zhang
,
C.
Muratore
, and
A. A.
Voevodin
,
Thin Solid Films
520
,
6793
(
2012
).
21.
O. D.
Vol'pyan
and
P. P.
Yakovlev
,
J. Opt. Technol.
69
,
319
(
2002
).
22.
E.
Atanassova
,
T.
Dimitrova
, and
J.
Koprinarova
,
Appl. Surf. Sci.
84
,
193
(
1995
).
23.
S. V.
Jagadeesh Chandra
,
S.
Uthanna
, and
G.
Mohan Rao
,
Appl. Surf. Sci.
254
,
1953
(
2008
).
24.
K.
Chen
,
M.
Nielsen
,
G. R.
Yang
,
E. J.
Rymaszewski
, and
T.-M.
Lu
,
J. Electron. Mater.
26
,
397
(
1997
).
25.
C.
Guoping
,
L.
Lingzhen
,
Z.
Suixin
, and
Z.
Haokang
,
Vacuum
41
,
1204
(
1990
).
26.
J. M.
Ngaruiya
,
S.
Venkataraj
,
R.
Drese
,
O.
Kappertz
,
T. P.
Leervad Pedersen
, and
M.
Wuttig
,
Phys. Status Solidi A
198
,
99
(
2003
).
27.
P. C.
Joshi
and
M. W.
Cole
,
J. Appl. Phys.
86
,
871
(
1999
).
28.
T.
Dimitrova
,
K.
Arshak
, and
E.
Atanassova
,
Thin Solid Films
381
,
31
(
2001
).
29.
A. L.
Patterson
,
Phys. Rev.
56
,
978
(
1939
).
30.
S. G.
Yoon
,
Y. T.
Kim
,
H. K.
Kim
,
M. J.
Kim
,
H. M.
Lee
, and
D. H.
Yoon
,
Mater. Sci. Eng., B
118
,
234
(
2005
).
31.
E. D.
Palik
,
Handbook of Optical Constants of Solids
(
Academic Press
,
San Diego
,
1998
).
32.
S.
Basu
,
B. J.
Lee
, and
Z. M.
Zhang
,
J. Heat Transfer
132
,
023301
(
2010
).
33.
Z. M.
Zhang
,
Nano/Microscale Heat Transfer
(
McGraw-Hill Professional
,
New York
,
2007
).
34.
P.
Clauws
,
J.
Broeckx
, and
J.
Vennik
,
Phys. Status Solidi B
131
,
459
(
1985
).
35.
G. L.
Carr
,
S.
Perkowitz
, and
D. B.
Tanner
, in
Infrared and Millimeter Waves
, edited by
W. J.
Button
(
Academic Press
,
Orlando
,
1985
), pp.
171
263
.
36.
H. D.
Downing
and
D.
Williams
,
J. Geophys. Res.
80
,
1656
, doi: (
1975
).
37.
B. J.
Lee
,
Z. M.
Zhang
,
E. A.
Early
,
D. P.
DeWitt
, and
B. K.
Tsai
,
J. Thermophys. Heat Transfer
19
,
558
(
2005
).
38.
Z. M.
Zhang
,
C. J.
Fu
, and
Q. Z.
Zhu
,
Adv. Heat Transfer
37
,
179
(
2003
).
39.
C. J.
Fu
and
Z. M.
Zhang
,
Int. J. Heat Mass Transfer
49
,
1703
(
2006
).
40.
B. J.
Lee
,
V. P.
Khuu
, and
Z. M.
Zhang
,
J. Thermophys. Heat Transfer
19
,
360
(
2005
).
41.
J. R.
Howell
,
R.
Siegel
, and
M. P.
Menguc
,
Thermal Radiation Heat Transfer
, 5th ed. (
CRC Press
,
2010
).
42.
Q. Z.
Zhu
and
Z. M.
Zhang
, in
Nanoparticle Heat Transfer and Fluid Flow
, edited by
W. J.
Minkowycz
,
E. M.
Sparrow
, and
J.
Abraham
(
CRC Press/Taylor&Francis Group
,
2012
), pp.
143
174
.
43.
W. H.
Press
,
Numerical Recipes: The Art of Scientific Computing
(
Cambridge University Press
,
2007
).
44.
W.
Kulisch
,
D.
Gilliland
,
G.
Ceccone
,
L.
Sirghi
,
H.
Rauscher
,
P. N.
Gibson
,
M.
Zün
,
F.
Bretagnol
, and
F.
Rossi
,
J. Vac. Sci. Technol. B
27
,
1180
(
2009
).
45.
Z. M.
Zhang
,
B. I.
Choi
,
M. I.
Flik
, and
A. C.
Anderson
,
J. Opt. Soc. Am. B
11
,
2252
(
1994
).
You do not currently have access to this content.