In this paper, a curved class of plasma actuator geometries is presented. The intension of this paper is to extend the versatility of a dielectric barrier discharge plasma actuator by modifying the geometry of its electrodes, so that the plasma generated body force is able to excite a broader spectrum of flow physics than plasma actuators with a more standard geometry. Two examples of flow control are demonstrated numerically. An example of this class of actuators is shown to generate boundary layer streaks, which can be used to accelerate or delay the laminar to turbulent transition process, depending on how they are applied. Simulations of a low Reynolds number airfoil are also performed using additional examples of this class of actuators, where it is shown that this plasma actuator geometry is able to introduce energy into and excite a secondary instability mode and increase unsteady kinetic energy in the boundary layer. These two cases show that this general class of curved actuators possesses an increased versatility with respect to the standard geometry actuators.

1.
L. N.
Cattafesta
and
M.
Sheplak
, “
Actuators for active flow control
,”
Ann. Rev. Fluid Mech.
43
,
247
272
(
2011
).
2.
E.
Moreau
, “
Airflow control by non-thermal plasma actuators
,”
J. Phys. D: Appl. Physi.
40
,
605
636
(
2007
).
3.
T. C.
Corke
,
C. L.
Enloe
, and
S. P.
Wilkinson
, “
Dielectric barrier discharge plasma actuators for flow control
,”
Ann. Rev. Fluid Mech.
42
,
505
529
(
2010
).
4.
M. R.
Visbal
, “
Strategies for control of transitional and turbulent flows using plasma-based actuators
,”
Int. J. Comput. Fluid Dyn.
24
(
7
),
237
258
(
2010
).
5.
D. P.
Rizzetta
and
M. R.
Visbal
, “
Large-eddy simulation of plasma-based turbulent boundary-layer separation control
,”
AIAA J.
48
,
2793
2810
(
2010
).
6.
J. R.
Roth
,
D. M.
Sherman
, and
S. P.
Wilkinson
, “
Electrohydrodynamic flow control with a glow-discharge surface plasma
,”
AIAA J.
38
,
1166
1172
(
2000
).
7.
D. M.
Schatzman
,
M.
David
, and
F. O.
Thomas
, “
Turbulent boundary-layer separation control with single dielectric barrier discharge plasma actuators
,”
AIAA J.
48
(
8
),
1620
1634
(
2010
).
8.
D.
Greenblatt
,
C. Y.
Schuele
,
D.
Roman
, and
C. O.
Paschereit
, “
Dielectric barrier discharge, flow control at very low flight Reynolds numbers
,”
AIAA J.
46
(
6
),
1528
1541
(
2008
).
9.
D. P.
Rizzetta
and
M. R.
Visbal
, “
Numerical investigation of plasma-based flow control for transitional highly loaded low-pressure turbine
,”
AIAA J.
45
(
10
),
2554
2564
(
2007
).
10.
D. P.
Rizzetta
and
M. R.
Visbal
, “
Numerical investigation of plasma-based control for low-Reynolds number airfoil flows
,”
AIAA J.
49
(
2
),
411
425
(
2011
).
11.
S.
Roy
and
C. C.
Wang
, “
Bulk flow modification with horseshoe and serpentine plasma actuators
,”
J. Phys. D: Appl. Phys.
42
,
032004
(
2009
).
12.
C.
Wang
,
R.
Durscher
, and
S.
Roy
, “
Three-dimensional effects of curved plasma actuators in quiescent air
,”
J. Appl. Phys.
109
,
083305
(
2011
).
13.
A.
Santhanakrishnan
and
J.
Jacob
, “
Flow control with plasma synthetic jet plasma actuators
,”
J. Phys. D: Appl. Phys.
40
,
637
651
(
2007
).
14.
R.
Durscher
and
S.
Roy
, “
Three-dimensional flow measurements induced from serpentine plasma actuators in quiescent air
,”
J. Phys. D: Appl. Phys.
45
,
035202
(
2012
).
15.
D. P.
Rizzeta
,
M. R.
Visbal
, and
P. E.
Morgan
, “
A high-order compact finite-difference scheme for large-eddy simulations of active flow control
,”
Prog. Aerospace Sci.
44
,
397
426
(
2008
).
16.
K. P.
Singh
and
S.
Roy
, “
Force approximation for a plasma actuator operating in atmospheric air
,”
J. Appl. Phys.
103
,
13305
(
2008
).
17.
K.
Butler
and
B.
Farrell
, “
Three dimensional optimal pertubations in viscous shear flow
,”
Phys. Fluids
4
(
8
),
1637
1650
(
1992
).
18.
P.
Andersson
,
M.
Berggren
, and
D. S.
Henningson
, “
Optimal disturbances and bypass transition in boundary layers
,”
Phys. Fluids
11
(
1
),
134
150
(
1999
).
19.
K. J. A.
Westin
,
A. V.
Boiko
,
B. G. B.
Klingmann
,
V. V.
Kozlov
, and
P. H.
Alfredsson
, “
Experiments in a boundary layer subjected to free stream turbulence. Part 1. Boundary layer structure and receptivity
,”
J. Fluid Mech.
281
,
193
218
(
1994
).
20.
P.
Andersson
,
L.
Brandt
,
A.
Bottaro
, and
D. S.
Henningson
, “
On the breakdown of boundary layer streaks
,”
J. Fluid Mech.
428
,
29
60
(
2001
).
21.
J. H. M.
Fransson
,
A.
Talamelli
,
L.
Brandt
, and
C.
Cossu
, “
Delaying transition to turbulence by a passive mechanism
,”
Phys. Rev. Lett.
96
,
064501
(
2006
).
22.
D.
Gaitonde
, “
Three-dimensional plasma-based flow control simulations with high-fidelity coupled first-principles approaches
,”
Int. J. Comput. Fluid Dyn.
24
(
7
),
259
279
(
2010
).
23.
D.
Greenblatt
and
I. J.
Wygnanski
, “
The control of flow separation by periodic excitation
,”
Prog. Aerospace Sci.
36
,
487
545
(
2000
).
24.
J. C. R.
Hunt
,
A.
Wrap
, and
P.
Moin
, “
Eddies, stream and convergence zones in turbulent flows
,” Center For Turbulence Research Report CTR-S88,
1998
.
25.
M. C.
Galbraith
and
M. R.
Visbal
, “
Implicit large eddy simulation of low Reynolds number transitional flow past the SD7003 airfoil
,” AIAA Paper 2010-4737,
2010
.
26.
M. V.
Ol
,
B. R.
McAuliffe
,
E. S.
Hanff
,
U.
Scholz
, and
C.
Kahler
, “
Comparison of laminar separation bubble measurements on a low Reynolds number airfoil in three facilities
,” AIAA Paper 2005-5149,
2005
.
You do not currently have access to this content.