We present a computational simulation study of non-equilibrium streamer discharges in a coaxial electrode and a corona geometry for automotive combustion ignition applications. The streamers propagate in combustible fuel-air mixtures at high pressures representative of internal combustion engine conditions. The study was performed using a self-consistent, two-temperature plasma model with finite-rate plasma chemical kinetics. Positive high voltage pulses of order tens of kV and duration of tens of nanoseconds were applied to the powered inner cylindrical electrode which resulted in the formation and propagation of a cathode-directed streamer. The resulting spatial and temporal production of active radical species such as O, H, and singlet delta oxygen is quantified and compared for lean and stoichiometric fuel-air mixtures. For the coaxial electrode geometry, the discharge is characterized by a primary streamer that bridges the inter-electrode gap and a secondary streamer that develops in the wake of the primary streamer. Most of the radicals are produced in the secondary streamer. For the corona geometry, only the primary streamer is observed and the radicals are produced throughout the length of the primary streamer column. The stoichiometry of the mixture was observed to have a relatively small effect on both the plasma discharge structure and the resulting yield of radical species.

1.
C.
Kruger
,
C.
Laux
,
L.
Yu
,
D.
Packan
, and
L.
Pierrot
,
Pure Appl. Chem.
74
,
337
(
2002
).
2.
U.
Kogelschatz
,
Plasma Chem. Plasma Process.
23
(
1
),
1
46
(
2003
).
3.
Yu. P.
Raizer
,
Gas Discharge Physics
(
Springer-Verlag
,
Berlin
,
1991
).
4.
T.
Shiraishi
and
T.
Urushihara
, in
SAE International
(
2011
), 0-0660.
5.
T.
Shiraishi
,
T.
Urushihara
, and
M.
Gundersen
,
J. Phys. D: Appl. Phys.
42
,
135208
(
2009
).
6.
D.
Singleton
,
S.
Pendleton
, and
M.
Gundersen
,
J. Phys. D: Appl. Phys.
44
,
022001
(
2011
).
7.
J.
Shin
and
L. L.
Raja
,
J. Appl. Phys.
94
,
7408
7415
(
2003
).
8.
X.
Yuan
,
J.
Shin
, and
L. L.
Raja
,
Vacuum
80
,
1199
1205
(
2006
).
9.
L.
Wu
,
J.
Lane
,
N.
Cernansky
,
D.
Miller
,
A.
Fridman
, and
A.
Starikovskiy
,
Proc. Combust. Inst.
33
,
3219
3224
(
2011
).
10.
See http://esgeetech.com/products/vizglow/ for VizGlow, 2013 Esgee Technologies.
11.
P.
Ventzek
,
T.
Sommerer
,
R.
Hoekstra
, and
M.
Kushner
,
Appl. Phys. Lett.
63
(
5
),
605
(
1993
).
12.
G.
Hagelaar
and
L.
Pitchford
,
Plasma Sources Sci. Technol.
14
(
4
),
722
(
2005
).
13.
D.
Breden
,
K.
Miki
, and
L. L.
Raja
,
Appl. Phys. Lett.
99
,
111501
(
2011
).
14.
P.
Ségur
,
A.
Bourdon
,
E.
Marode
,
D.
Bessieres
, and
J.
Paillol
,
Plasma Sources Sci. Technol.
15
(
4
),
648
(
2006
).
15.
A.
Bourdon
,
V.
Pasko
,
N.
Liu
,
S.
Celestin
,
P.
Segur
, and
E.
Marode
,
Plasma Sources Sci. Technol.
16
(
3
),
656
(
2007
).
16.
M.
Zheleznyak
,
A.
Mnatsakanyan
, and
A.
Sizykh
,
High Temp.
20
,
357
(
1982
).
17.
A.
Luque
,
U.
Ebert
,
C.
Montijn
, and
W.
Hundsdorfer
,
Appl. Phys. Lett.
90
,
081501
(
2007
).
18.
G. V.
Naidis
,
J. Phys. D: Appl. Phys.
40
,
4525
4531
(
2007
).
19.
S.
Mahadevan
and
L. L.
Raja
,
J. Appl. Phys.
107
,
093304
(
2010
).
20.
D.
Breden
and
L.
Raja
,
AIAA J.
50
,
647
658
(
2012
).
21.
S.
Mahadevan
and
L. L.
Raja
,
AIAA J.
50
,
325
337
(
2012
).
22.
E.
Marode
,
J. Appl. Phys.
46
(
5
),
2005
(
1975
).
23.
E.
Marode
,
J. Appl. Phys.
46
(
5
),
2016
(
1975
).
24.
R.
Sigmond
,
J. Appl. Phys.
56
,
1355
1370
(
1984
).
25.
A.
Starikovskii
and
N.
Aleksandrov
,
Prog. Energy Combust. Sci.
39
,
61
(
2013
).
26.
A.
Ionin
,
I.
Kochetov
,
A.
Napartovich
, and
N.
Yuryshev
,
J. Phys. D: Appl. Phys.
40
,
R25
R61
(
2007
).
27.
D.
Davies
,
L.
Kline
, and
W.
Bies
,
J. Appl. Phys.
65
,
3311
3323
(
1989
).
28.
S.
Panchesnyi
,
M.
Nudnova
, and
A.
Starikovskii
,
Phys. Rev. E
71
,
016407
(
2005
).
29.
N.
Aleksandrov
,
S.
Kindysheva
,
E.
Kukaev
,
S.
Starikovskaia
, and
A.
Starikovskii
,
Plasma Phys. Rep.
35
(
10
),
867
(
2009
).
You do not currently have access to this content.