We experimentally investigate the electromagnetic (EM) responses of a broadband reflective polarization rotator under normal incidence. It is found that the rotator can generate multi-order plasmon resonances at three neighboring frequencies. At each frequency, the rotator behaves as a high impedance surface along one axis while as a metallic reflective surface along the other axis. Thus, a 180° phase difference is generated between the two orthogonal components of reflected waves. When the incident wave is polarized by 45° with respect to the symmetry axis of the rotator, the polarization of reflected waves is rotated by 90°. The designed rotator presents broadband properties. It can perform perfect 90° polarization rotation at three frequencies and maintains a polarization conversion efficiency greater than 56% in 2.0–3.5 GHz. The rotator provides a route to broadband polarization rotation and has application values in polarization control.

1.
H. F.
Contopanagos
,
C. A.
Kyriazidou
,
W. M.
Merrill
, and
N. G.
Alexopoulos
,
J. Opt. Soc. Am. A
16
,
1682
(
1999
).
2.
C. A.
Kyriazidou
,
H. F.
Contopanagos
,
W. M.
Merrill
, and
N. G.
Alexopoulos
,
IEEE Trans. Antennas Propag.
48
,
95
(
2000
).
3.
L.
Lu
,
S. B.
Qu
,
H.
Ma
,
F.
Yu
,
S.
Xia
,
Z.
Xu
, and
P.
Bai
,
Acta Phys. Sin.
62
,
104102
(
2013
).
4.
N. I.
Landy
,
S.
Sajuyigbe
,
J. J.
Mock
,
D. R.
Smith
, and
W. J.
Padilla
,
Phys. Rev. Lett.
100
,
207402
(
2008
).
5.
J. F.
Wang
,
S. B.
Qu
,
Z.
Xu
,
H.
Ma
,
X. H.
Wang
,
D. Q.
Huang
, and
Y. F.
Li
,
Photonics Nanostruct. Fundam. Appl.
10
,
540
(
2012
).
6.
J. F.
Wang
,
S. B.
Qu
,
Z.
Xu
,
H.
Ma
,
J. Q.
Zhang
,
Y. H.
Li
, and
X. H.
Wang
,
IEEE Trans. Antennas Propag.
61
,
748
(
2013
).
7.
A. V.
Rogacheva
,
V. A.
Fedotov
,
A. S.
Schwanecke
, and
N. I.
Zheludev
,
Phys. Rev. Lett.
97
,
177401
(
2006
).
8.
F.
Eftekhari
and
T. J.
Davis
,
Phys. Rev. B
86
,
075428
(
2012
).
9.
M.
Mutlu
and
E.
Ozbay
,
Appl. Phys. Lett.
100
,
051909
(
2012
).
10.
J. K.
Gansel
,
M.
Thiel
,
M. S.
Rill
,
M.
Decker
,
K.
Bade
,
V.
Saile
,
G.
von Freymann
,
S.
Linden
, and
M.
Wegener
,
Science
325
,
1513
(
2009
).
11.
T.
Li
,
S. M.
Wang
,
J. X.
Cao
,
H.
Liu
, and
S. N.
Zhu
,
Appl. Phys. Lett.
97
,
261113
(
2010
).
12.
J.
Hao
,
Y.
Yuan
,
L.
Ran
,
T.
Jiang
,
J. A.
Kong
,
C. T.
Chan
, and
L.
Zhou
,
Phys. Rev. Lett.
99
,
063908
(
2007
).
13.
J. Y.
Chin
,
M.
Lu
, and
T. J.
Cui
,
Appl. Phys. Lett.
93
,
251903
(
2008
).
14.
W.
Sun
,
Q.
He
,
J.
Hao
, and
L.
Zhou
,
Opt. Lett.
36
,
927
929
(
2011
).
15.
J.
Zhao
,
Y.
Chen
, and
Y.
Feng
,
Appl. Phys. Lett.
92
,
071114
(
2008
).
16.
M.
Liu
,
Y.
Zhang
,
X.
Wang
, and
C.
Jin
,
Opt. Express
18
,
11990
(
2010
).
17.
J. B.
Pendry
,
A. J.
Holden
,
D. J.
Robbins
, and
W. J.
Stewart
,
IEEE Trans. Microwave Theory Tech.
47
,
2075
(
1999
).
18.
C.
Chen
,
S.
Wu
, and
T.
Yen
,
Appl. Phys. Lett.
93
,
034110
(
2008
).
19.
D.
Sievenpiper
,
L.
Zhang
,
R. F.
Broas
,
N. G.
Alexopolous
, and
E.
Yablonovitch
,
IEEE Trans. Microwave Theory Tech.
47
,
2059
(
1999
).
20.
L.
Zhou
,
W.
Wen
,
C. T.
Chan
, and
P.
Sheng
,
Appl. Phys. Lett.
83
,
3257
(
2003
).
You do not currently have access to this content.