A theory is presented for exciton formation in a graphene sheet using the center-of-mass approximation. The energy levels and wavefunctions of exciton are calculated analytically which show that the exciton can form if the band gap of graphene is not zero. We show that the energy gap of graphene plays the role of the mass which if not zero, leads to formation of the excitons. It is shown that the main quantum number of the exciton ground state changes with the graphene dielectric constant. Also, all of the states are found to be four-fold degenerate. The binding energy of exciton can reach as high as 1/4 of the energy gap of graphene which is notable among the conventional quasi-2D systems. This result can play an important rule in the photonics of graphene.

1.
S.
Das Sarma
,
S.
Adam
,
E. H.
Hwang
, and
E.
Rossi
,
Rev. Mod. Phys.
83
,
407
(
2011
).
2.
E. H.
Hwang
and
S.
Das Sarma
,
Phys. Rev. B
75
,
205418
(
2007
).
3.
O. V.
Gamayun
,
E. V.
Gorbar
, and
V. P.
Gusynin
,
Phys. Rev. B
80
,
165429
(
2009
).
4.
L.
Yang
,
J.
Deslippe
,
C.-H.
Park
,
M. L.
Cohen
, and
S. G.
Louie
,
Phys. Rev. Lett.
103
,
186802
(
2009
).
5.
N. M. R.
Peres
,
R. M.
Ribeiro
, and
A. H.
Castro Neto
,
Phys. Rev. Lett.
105
,
055501
(
2010
).
7.
L.
Yang
,
M. L.
Cohen
, and
S. G.
Louie
,
Nano Lett.
7
,
3112
(
2007
).
8.
D.
Prezzi
,
D.
Varsano
,
A.
Ruini
,
A.
Marini
, and
E.
Molinari
,
Phys. Rev. B
77
,
041404
(
2008
).
9.
L.
Yang
,
M. L.
Cohen
, and
S. G.
Louie
,
Phys. Rev. Lett.
101
,
186401
(
2008
).
10.
X.
Zhu
and
H.
Su
,
J. Phys. Chem. C
114
,
17257
(
2010
).
11.
J. H.
Grösnqvist
,
T.
Stroucken
,
G.
Berghäuser
, and
S. W.
Koch
, “
Excitons in graphene and the influence of the dielectric environment
,” e-print, arXiv:1107.5653,
2011
.
12.
G.
Giovannetti
,
P. A.
Khomyakov
,
G.
Brocks
,
P. J.
Kelly
, and
J.
van den Brink
,
Phys. Rev. B
76
,
073103
(
2007
).
13.
X.
Zhong
,
Y. K.
Yap
,
R.
Pandey
, and
S. P.
Karna
,
Phys. Rev. B
83
,
193403
(
2011
).
14.
C. R.
Dean
,
A. F.
Young
,
I.
Meric
,
C.
Lee
,
L.
Wang
,
S.
Sorgenfrei
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Kim
,
K. L.
Shepard
, and
J.
Hone
,
Nat. Nanotechnol.
5
,
722
(
2010
).
15.
N.
Kharche
and
S. K.
Nayak
,
Nano Lett.
11
,
5274
(
2011
).
16.
B.
Sachs
,
T. O.
Wehling
,
M. I.
Katsnelson
, and
A. I.
Lichtenstein
,
Phys. Rev. B
84
,
195414
(
2011
).
17.
S. Y.
Zhou
,
G.-H.
Gweon
,
A. V.
Fedorov
,
P. N.
First
,
W. A.
de Heer
,
D.-H.
Lee
,
F.
Guinea
,
A. H.
Castro Neto
, and
A.
Lanzara
,
Nature Mater.
6
,
916
(
2007
).
18.
A. L.
Walter
,
S.
Nie
,
A.
Bostwick
,
K. S.
Kim
,
L.
Moreschini
,
Y. J.
Chang
,
D.
Innocenti
,
K.
Horn
,
K. F.
McCarty
, and
E.
Rotenberg
,
Phys. Rev. B
84
,
195443
(
2011
).
19.
L.
Liu
and
Z.
Shen
,
Appl. Phys. Lett.
95
,
252104
(
2009
).
20.
J.
da Silva-Araújo
,
H.
Chacham
, and
R. W.
Nunes
,
Phys. Rev. B
81
,
193405
(
2010
).
21.
D. A.
Abanin
,
A. V.
Shytov
, and
L. S.
Levitov
,
Phys. Rev. Lett.
105
,
086802
(
2010
).
22.
M. C. S.
Escao
,
T. Q.
Nguyen
, and
H.
Kasai
,
Chem. Phys. Lett.
515
,
85
(
2011
).
23.
D.-M.
Chen
,
P. M.
Shenai
, and
Y.
Zhao
,
Phys. Chem. Chem. Phys.
13
,
1515
(
2011
).
24.
P. P.
Shinde
and
V.
Kumar
,
Phys. Rev. B
84
,
125401
(
2011
).
25.
V. P.
Gusynin
,
V. A.
Miransky
,
S. G.
Sharapov
, and
I. A.
Shovkovy
,
Phys. Rev. B
74
,
195429
(
2006
).
26.
W.
Greiner
,
Relativistic Quantum Mechanics. Wave Equations
(
Springer
,
2000
).
27.
S. G.
Karshenboim
,
Int. J. Mod. Phys. A
19
,
3879
(
2004
).
28.
G. B.
Arfken
,
H. J.
Weber
, and
F. E.
Harris
,
Mathematical Methods for Physicists, Sixth Edition: A Comprehensive Guide
(
Academic Press
,
2005
).
29.
O. L.
Berman
,
R. Y.
Kezerashvili
, and
K.
Ziegler
, “
Coupling of two dirac particles
,” e-print, arXiv:1302.4505,
2013
.
You do not currently have access to this content.