We investigate channel-length scaling characteristics for effects of a single charged defect in a carbon nanotube field-effect transistor (CNFET), using the nonequilibrium Greens function method. We find that the threshold voltage shift due to a single charge in midchannel increases with the decreasing channel length. In a p-type CNFET, the relative current reduction in the on-state due to a positive charge and the relative current change in the turn-on region due to a negative charge increase apparently with the decreasing channel length. The threshold voltage shift and relative current change caused by a single charge for short channel CNFETs increases with the gate-oxide thickness much faster than that for long channel CNFETs. For a short channel p-type CNFET, the current reduction in the on-state due to a positive charge may be larger than 60% and the threshold voltage shift due to a negative charge may amount to 0.6 V.

1.
S. J.
Tans
,
A. R. M.
Verschueren
, and
C.
Dekker
,
Nature
393
,
49
(
1998
).
2.
R.
Martel
,
T.
Schmidt
,
H. R.
Shea
,
T.
Hertel
, and
Ph.
Avouris
,
Appl. Phys. Lett.
73
,
2447
(
1998
).
3.
S. J.
Wind
,
J.
Appenzeller
,
R.
Martel
,
V.
Derycke
, and
Ph.
Avouris
,
Appl. Phys. Lett.
80
,
3817
(
2002
).
4.
A.
Javey
,
J.
Guo
,
Q.
Wang
,
M.
Lundstrom
, and
H.
Dai
,
Nature
424
,
654
(
2003
).
5.
A. D.
Franklin
and
Z.
Chen
,
Nat. Nanotechnol.
5
,
858
(
2010
).
6.
F.
Liu
,
M.
Bao
,
H.
Kim
,
K. L.
Wang
,
C.
Li
,
X.
Liu
, and
C.
Zhou
,
Appl. Phys. Lett.
86
,
163102
(
2005
).
7.
F.
Liu
,
K. L.
Wang
,
C.
Li
, and
C.
Zhou
,
IEEE Trans. Nanotechnol.
5
,
441
(
2006
).
8.
F.
Liu
and
K. L.
Wang
,
Nano Lett.
8
,
147
(
2008
).
9.
J.
Chan
,
B.
Burke
,
K.
Evans
,
K. A.
Williams
,
S.
Vasudevan
,
M.
Liu
,
J.
Campbell
, and
A. W.
Ghosh
,
Phys. Rev. B
80
,
033402
(
2009
).
10.
J.-W.
Lee
,
B. H.
Lee
,
H.
Shin
, and
J.-H.
Lee
,
IEEE Trans. Electron Devices
57
,
913
(
2010
).
11.
S.
Heinze
,
N.-P.
Wang
, and
J.
Tersoff
,
Phys. Rev. Lett.
95
,
186802
(
2005
).
12.
N.
Neophytou
,
D.
Kienle
,
E.
Polozzi
, and
M. P.
Anantram
,
Appl. Phys. Lett.
88
,
242106
(
2006
).
14.
N.-P.
Wang
,
S.
Heinze
, and
J.
Tersoff
,
Nano Lett.
7
,
910
(
2007
).
15.
N.-P.
Wang
and
X.-J.
Xu
,
EPL
100
,
47009
(
2012
).
16.
K. S.
Rall
,
W. J.
Skocpol
,
L. D.
Jackel
,
R. E.
Howard
,
L. A.
Fetter
,
R. W.
Epworth
, and
D. M.
Tennant
,
Phys. Rev. Lett.
52
,
228
(
1984
).
17.
M. J.
Kirton
,
M. J.
Uren
,
S.
Collins
,
M.
Schulz
,
A.
Karmann
, and
K.
Scheffer
,
Semicond. Sci. Technol.
4
,
1116
(
1989
).
18.
M. J.
Uren
,
D. J.
Day
, and
M. J.
Kirton
,
Appl. Phys. Lett.
47
,
1195
(
1985
).
19.
P.
Dutta
and
P. M.
Horn
,
Rev. Mod. Phys.
53
,
497
(
1981
).
20.
M. B.
Weissman
,
Rev. Mod. Phys.
60
,
537
(
1988
).
21.
F.
Léonard
and
J.
Tersoff
,
Phys. Rev. Lett.
88
,
258302
(
2002
).
22.
J.
Appenzeller
,
Y.-M.
Lin
,
J.
Knoch
, and
Ph.
Avouris
,
Phys. Rev. Lett.
93
,
196805
(
2004
).
23.
S.
Datta
,
Electronic Transport in Mesoscopic Systems
(
Cambridge University Press
,
Cambridge, UK
,
1995
).
24.
J.
Guo
,
S.
Datta
,
M.
Lundstrom
, and
M. P.
Anantram
,
Int. J. Multiscale Comp. Eng.
2
,
257
(
2004
).
25.
M.
Brandbyge
,
J.-L.
Mozos
,
P.
Ordejón
,
J.
Taylor
, and
K.
Stokbro
,
Phys. Rev. B
65
,
165401
(
2002
).
26.
A. R.
Rocha
and
S.
Sanvito
,
Phys. Rev. B
70
,
094406
(
2004
).
27.
M.
Büttiker
,
Y.
Imry
,
R.
Landauer
, and
S.
Pinhas
,
Phys. Rev. B
31
,
6207
(
1985
).
28.
Y.
Meir
and
N. S.
Wingreen
,
Phys. Rev. Lett.
68
,
2512
(
1992
).
29.
A.
Svizhenko
,
M. P.
Anantram
,
T. R.
Govindan
, and
B.
Biegel
,
J. Appl. Phys.
91
,
2343
(
2002
).
30.
D.
Chattopadhyay
and
H. J.
Queisser
,
Rev. Mod. Phys.
53
,
745
(
1981
).
31.
M. F.
Lin
and
D. S.
Chuu
,
Phys. Rev. B
56
,
4996
(
1997
).
You do not currently have access to this content.