This work explores the strain dependence of the piezoelectric effect in GaAs and InAs zinc blende crystals. We write the polarization in terms of the internal anion-cation displacement and the ionic and dipole charges. We then use ab initio density functional theory to evaluate the dependence of all quantities on the strain tensor. We investigate which aspects of the elastic and dielectric response of zinc blende crystals are sources of non-linearities in the piezoelectric effect. We observe that the main source of non-linearities is the response to elastic deformation and, in particular, the internal sublattice displacement of the interpenetrating cation and anion sublattices. We show that the internal sublattice displacement dependence on the diagonal stress components is neither symmetric nor antisymmetric in the strain. Therefore, non-linear coefficients of order higher than quadratic are needed to correctly describe non-linear effects. Using a fitting procedure of the ab initio data, we also determine all non-linear piezoelectric coefficients up to the third power in the diagonal components of the strain tensor. We can report that non-linear effects up to third order can be significant in precisely determining the magnitude of the piezoelectric polarization if compressive or tensile strains larger than 10% are present. We notice however that, in nanostructures such as quantum dots, the optical properties are less sensitive to the third order non-linear piezoelectric effect and that third order coefficients can therefore be neglected.

1.
R. M.
Martin
,
Phys. Rev. B
5
,
1607
(
1972
).
2.
W. G.
Cady
,
Piezoelectricity
(
McGraw-Hill
,
New York
,
1946
).
3.
S.
Nakamura
and
G.
Fasol
,
The Blue Laser Diode: GaN Based Light Emitters and Lasers
(
Springer-Verlag
,
Berlin
,
1997
).
4.
Z. L.
Wang
Nano-piezotronics
,”
Adv. Mater.
19
,
889
992
(
2007
).
5.
R. S.
Yang
,
Y.
Qin
,
L. M.
Dai
, and
Z. L.
Wang
,
Nat. Nanotechnol.
4
,
34
39
(
2009
).
6.
S.
Xu
,
Y.
Qin
,
C.
Xu
,
Y. G.
Wei
,
R. S.
Yang
, and
Z. L.
Wang
,
Nat. Nanotechnol.
5
,
366
(
2010
).
8.
J.
Pal
,
G.
Tse
,
V.
Haxha
,
M. A.
Migliorato
, and
S.
Tomic
,
Phys. Rev. B
84
,
085211
(
2011
).
9.
L. C.
Lew Yan Voon
and
M.
Willatzen
,
J. Appl. Phys.
109
,
031101
(
2011
).
10.
H. Y. S.
Al-Zahrani
,
J.
Pal
, and
M. A.
Migliorato
, “
Non-linear piezoelectricity in wurtzite ZnO semiconductors
,”
Nano Energy
(published online).
11.
M. A.
Migliorato
,
D.
Powell
,
A. G.
Cullis
,
T.
Hammerschmidt
, and
G. P.
Srivastava
,
Phys. Rev. B
74
,
245332
(
2006
).
12.
G.
Bester
,
X.
Wu
,
D.
Vanderbilt
, and
A.
Zunger
,
Phys. Rev. Lett.
96
,
187602
(
2006
).
13.
A.
Beya-Wakata
,
P.-Y.
Prodhomme
, and
G.
Bester
,
Phys. Rev. B
84
,
195207
(
2011
).
14.
W. A.
Harrison
,
Electronic Structure and Properties of Solids
(
Dover Publications, Inc.
,
New York
,
1989
).
15.
R.
Garg
,
A.
Hüe
,
V.
Haxha
,
M. A.
Migliorato
,
T.
Hammerschmidt
, and
G. P.
Srivastava
,
Appl. Phys. Lett.
95
,
041912
(
2009
).
16.
F.
Bernardini
and
V.
Fiorentini
,
Appl. Phys. Lett.
80
,
4145
(
2002
).
17.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
18.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
19.
S. J.
Clark
,
M. D.
Segall
,
C. J.
Pickard
,
P. J.
Hasnip
,
M. J.
Probert
,
K.
Refson
, and
M. C.
Payne
,
Z. Kristallogr.
220
(
5–6
),
567
570
(
2005
).
20.
S.-H.
Lee
,
J.-H.
Kang
, and
M.-H.
Kang
,
J. Korean Phys. Soc.
31
,
811
(
1997
).
21.
22.
M. V.
Berry
,
Proc. R. Soc. Lond. A
392
,
45
57
(
1984
).
23.
See supplementary material as http://dx.doi.org/10.1063/1.4818798 for the Kleinman Vector and Bond Polarity as a function of strain in Figures 1–4 for InAs and GaAs. The plots display the dependence in the strain components ε1 and ε2 for a value of ε3 which increases in steps of 0.02 from −0.1 in the top left plot to +0.1 in the bottom right plot. The increase in ε1 is left to right first and then onto the lower row. Not all possible combinations of diagonal strains are shown as cubic symmetry implies invariance upon exchange of ε1, ε2, and ε3.
24.
D.
Powell
,
M. A.
Migliorato
, and
A. G.
Cullis
,
Phys. Rev. B
75
,
115202
(
2007
).
25.
G.
Arlt
and
P.
Quadflieg
,
Phys. Status Solidi B
25
,
323
(
1968
).
26.
B. G.
Crutchley
,
I. P.
Marko
,
J.
Pal
,
M. A.
Migliorato
, and
S. J.
Sweeney
,
Phys. Status Solidi B
250
,
698
702
(
2013
).
27.
T.
Suski
,
S. P.
Łepkowski
,
G.
Staszczak
,
R.
Czernecki
,
P.
Perlin
, and
W.
Bardyszewski
,
J. Appl. Phys.
112
,
053509
(
2012
).
28.
L.
Pedesseau
,
C.
Katan
, and
J.
Even
,
Appl. Phys. Lett.
100
,
031903
(
2012
).
29.
M. A.
Migliorato
,
D.
Powell
,
S. L.
Liew
,
A. G.
Cullis
,
P.
Navaretti
,
M. J.
Steer
, and
M.
Hopkinson
,
J. Appl. Phys.
96
,
5169
5172
(
2004
).
30.
M. A.
Migliorato
,
D.
Powell
,
E. A.
Zibik
,
L. R.
Wilson
,
M.
Fearn
,
J. H.
Jefferson
,
M. J.
Steer
,
M.
Hopkinson
, and
A. G.
Cullis
,
Physica E (Amsterdam)
26
,
436
440
(
2005
).
31.
G.
Bester
,
A.
Zunger
,
X.
Wu
, and
D.
Vanderbilt
,
Phys. Rev. B
74
,
081305
R
(
2006
).
32.
V.
Haxha
,
I.
Drouzas
,
J. M.
Ulloa
,
M.
Bozkurt
,
P. M.
Koenraad
,
D. J.
Mowbray
,
H. Y.
Liu
,
M. J.
Steer
,
M.
Hopkinson
, and
M. A.
Migliorato
,
Phys Rev B
80
,
165334
(
2009
).
33.
S.
Tomić
and
N.
Vukmirović
,
J. Appl. Phys.
110
,
053710
(
2011
).

Supplementary Material

You do not currently have access to this content.