High-speed video (100 000 fps) is used to examine the behavior of silver nanoparticle suspensions ejected from a donor substrate during laser-induced forward transfer (LIFT) as a function of viscosity, donor film thickness, and voxel area. Both high-speed video and inspection of the post-transferred material indicate dramatic changes in the behavior of the fluid as the viscosity of the nano-suspensions increases from that of inks (∼0.01 Pa·s) to pastes (>100 Pa·s). Over a specific range of viscosities (90–150 Pa·s) and laser fluences (35–65 mJ/cm2), the ejected voxels precisely reproduce the size and shape of the laser spot. This LIFT regime is known as laser decal transfer or LDT. Analysis of the high-speed video indicates that the speeds of the voxels released by the LDT process do not exceed 1 m/s. Such transfer speeds are at least an order of magnitude lower than those associated with other LIFT processes, thus minimizing voxel deformation during flight and upon impact with the receiving substrate. Variation in the threshold fluence for initiating the LDT process is measured as a function of donor film thickness and transfer spot size. Overall, the congruent nature of the silver nanopaste voxels deposited by LDT is unique among non-contact digital printing techniques given its control of the voxel's size and shape, thus allowing partial parallelization of the direct-write process.

1.
J.-U.
Park
,
M.
Hardy
,
S. J.
Kang
,
K.
Barton
,
K.
Adair
,
D. K.
Mukhopadhyay
,
C. Y.
Lee
,
M. S.
Strano
,
A. G.
Alleyne
,
J. G.
Georgiadis
,
P. M.
Ferreira
, and
J. A.
Rogers
,
Nature Mater.
6
,
782
(
2007
).
2.
K. K. B.
Hon
,
L.
Li
, and
I. M.
Hutchings
,
CIRP Ann.
57
(
2
),
601
(
2008
).
3.
B. H.
King
,
D.
Dimos
,
P.
Yang
, and
S. L.
Morissette
,
J. Electroceram.
3
(
2
),
173
(
1999
).
4.
J. A.
Lewis
,
Adv. Funct. Mater.
16
,
2193
(
2006
).
5.
P.
Calvert
,
Chem. Mater.
13
,
3299
(
2001
).
6.
C. B.
Arnold
,
P.
Serra
, and
A.
Pique
,
MRS Bull.
32
,
23
(
2007
).
7.
H.
Kang
,
D.
Soltman
, and
V.
Subramanian
,
Langmuir
26
,
11568
(
2010
).
8.
M.
Duocastella
,
H.
Kim
,
P.
Serra
, and
A.
Piqué
,
Appl. Phys. A: Mater. Sci. Process.
106
(
3
),
471
(
2012
).
9.
A.
Piqué
,
R. C. Y.
Auyeung
,
H.
Kim
,
K. M.
Metkus
, and
S. A.
Mathews
,
J. Laser Micro/Nanoeng.
3
,
163
(
2008
).
10.
A.
Piqué
,
R. C. Y.
Auyeung
,
K.
Metkus
,
H.
Kim
,
S. A.
Mathews
,
T.
Bailey
,
X.
Chen
, and
L. J.
Young
,
Proc. SPIE
6879
,
687911
(
2008
).
11.
H.
Kim
,
J. S.
Melinger
,
A.
Khachatrian
,
N. A.
Charipar
,
R. C. Y.
Auyeung
, and
A.
Piqué
,
Opt. Lett.
35
,
4039
(
2010
).
12.
J.
Wang
,
R. C. Y.
Auyeung
,
H.
Kim
,
N. A.
Charipar
, and
A.
Piqué
,
Adv. Mater.
22
,
4462
(
2010
).
13.
R. C. Y.
Auyeung
,
H.
Kim
,
A. J.
Birnbaum
,
M.
Zalalutdinov
,
S. A.
Mathews
, and
A.
Piqué
,
Appl. Phys. A: Mater. Sci. Process.
97
,
513
(
2009
).
14.
A. J.
Birnbaum
,
H.
Kim
,
N. A.
Charipar
, and
A.
Piqué
,
Appl. Phys. A: Mater. Sci. Process.
99
,
711
(
2010
).
15.
A. J.
Birnbaum
,
R. C. Y.
Auyeung
,
K. J.
Wahl
,
M.
Zalalutidnov
,
A. R.
Laracuente
, and
A.
Piqué
,
J. Appl. Phys.
108
,
083526
(
2010
).
16.
D.
Soltman
,
B.
Smith
,
H.
Kang
,
S. J. S.
Morris
, and
V.
Subramanian
,
Langmuir
26
,
15686
(
2010
).
17.
R. C. Y.
Auyeung
,
H.
Kim
,
N.
Charipar
,
A.
Birnbaum
,
S.
Mathews
, and
A.
Piqué
,
Appl. Phys. A: Mater. Sci. Process.
102
,
21
(
2011
).
18.
M.
Duocastella
,
J. M.
Fernández-Pradas
,
P.
Serra
, and
J. L.
Morenza
,
Appl. Phys. A: Mater. Sci. Process.
93
(
2
),
453
(
2008
).
19.
M.
Feinaeugle
,
A. P.
Alloncle
,
P.
Delaporte
,
C. L.
Sones
, and
R. W.
Eason
,
Appl. Surf. Sci.
258
(
22
),
8475
(
2012
).
20.
A.
Piqué
,
N. C.
Charipar
,
H.
Kim
,
M. A.
Kirleis
,
R. C. Y.
Auyeung
,
A. T.
Smith
,
K. M.
Metkus
, and
S. A.
Mathews
,
Proc. SPIE
8455
,
845514
(
2012
).
21.
M.
Colina
,
M.
Duocastella
,
J. M.
Fernández-Pradas
,
P.
Serra
, and
J. L.
Morenza
,
J. Appl. Phys.
99
(
8
),
084909
(
2006
).
22.
M.
Duocastella
,
J. M.
Fernández-Pradas
,
J. L.
Morenza
, and
P.
Serra
,
J. Appl. Phys.
106
,
084907
(
2009
).
23.
M. S.
Brown
,
N. T.
Kattamis
, and
C. B.
Arnold
,
J. Appl. Phys.
107
(
8
),
083103
(
2010
).
24.
D.
Young
,
R. C. Y.
Auyeung
,
A.
Piqué
,
D. B.
Chrisey
, and
D.
Dlott
,
Appl. Phys. Lett.
78
(
21
),
3169
(
2001
).
25.
S. A.
Mathews
,
R. C. Y.
Auyeung
, and
A.
Piqué
,
Proc. SPIE
8244
,
82440A
(
2012
).
26.
I.
Zergioti
,
D. G.
Papazoglou
,
A.
Karaiskou
,
C.
Fotakis
,
E.
Gamaly
, and
A.
Rode
,
Appl. Surf. Sci.
208–209
(
1
),
177
(
2003
).
27.
R.
Fardel
,
M.
Nagel
,
F.
Nüesch
,
T.
Lippert
, and
A.
Wokaun
,
J. Phys. Chem. C
114
(
12
),
5617
(
2010
).
28.
T.
Mattle
,
J.
Shaw-Stewart
,
C. W.
Schneider
,
T.
Lippert
, and
A.
Wokaun
,
Appl. Surf. Sci.
258
(
23
),
9352
(
2012
).
29.
See supplementary material at http://dx.doi.org/10.1063/1.4817494 for still-frame images extracted from videos of low viscosity (<60 Pa·s) or “liquid-like” transfers with three different laser fluences (S1); for still-frame from high-speed video of low viscosity (<60 Pa·s) silver nano-suspension demonstrating jetting behavior (S2); for still-frames from videos of very high viscosity (>500 Pa·s) or “solid-like” transfers with three different laser fluences (S3); for still-frame from high-speed video of very high viscosity (>500 Pa·s) silver nano-suspension demonstrating dry or “solid-like” behavior (S4); for still-frame from high-speed video of high viscosity (≈100 Pa·s) silver nano-suspension demonstrating “decal” behavior (S5); and for still-frame from high-speed video of high viscosity (≈100 Pa·s) silver nano-suspension demonstrating “decal” behavior, with minimal rotation (S6).
30.
C.
Boutopoulos
,
A. P.
Alloncle
,
I.
Zergioti
, and
Ph.
Delaporte
,
Appl. Surf. Sci.
278
,
71
(
2013
).
31.
K. S.
Kaur
,
R.
Fardel
,
T. C.
May-Smith
,
M.
Nagel
,
D. P.
Banks
,
C.
Grivas
,
T.
Lippert
, and
R. W.
Eason
,
J. Appl. Phys.
105
(
11
),
113119
(
2009
).
32.
M. S.
Brown
,
N. T.
Kattamis
, and
C. B.
Arnold
,
Microfluid. Nanofluid.
11
,
199
(
2011
).
33.
M.
Duocastella
,
J. M.
Fernández-Pradas
, and
P.
Serra
,
Thin Solid Films
518
(
18
),
5321
(
2010
).
34.
R.
Fardel
,
M.
Nagel
,
F.
Nüesch
,
T.
Lippert
, and
A.
Wokaun
,
Appl. Surf. Sci.
255
(
10
),
5430
(
2009
).
35.
G. E.
Dieter
,
Mechanical Metallurgy
, 3rd ed. (
McGraw-Hill
,
New York
,
1986
) p.
658
.
36.
D. K.
Dasgupta
,
J. Mater. Shaping Technol.
6
(
3
),
165
(
1989
).
37.
R. E.
Reed-Hill
,
Physical Metallurgy Principles
, 2nd ed. (
PWS-KENT Publishing Company
,
Boston
,
1973
) p.
758
.
38.
S. S.
Charschan
,
Guide for Material Processing by Lasers
(
Laser Institute of America
,
1977
).
39.
Y.
Zhang
,
A. M.
Schwartzberg
,
K.
Xu
,
C.
Gu
, and
J. Z.
Zhang
,
Proc. SPIE
5929
,
592912
1
(
2005
).

Supplementary Material

You do not currently have access to this content.