Lead-free ceramics of composition Bi(Mg1/2Ti1/2)O3-(Bi1/2K1/2)TiO3-(Bi1/2Na1/2)TiO3 were prepared using solid state synthesis techniques. The dielectric spectra showed a Tmax of more than 320 °C for all compositions, and the transitions became increasingly diffuse as the Bi(Mg1/2Ti1/2)O3 content increased. A lower temperature transition, indicating a transformation from an ergodic to a non-ergodic relaxor state, was also seen for all compositions, and this transition temperature decreased as the mole fraction of Bi(Mg1/2Ti1/2)O3 increased. The composition with 1% Bi(Mg1/2Ti1/2)O3 showed characteristic ferroelectric-like polarization and strain hysteresis. However, compositions with increased Bi(Mg1/2Ti1/2)O3 content became increasingly ergodic at room temperature with pinched polarization loops and no negative strain. Among these compositions, the magnitude of d33* increased with Bi(Mg1/2Ti1/2)O3 content, and the composition with 10% Bi(Mg1/2Ti1/2)O3 exhibited a d33* of 422 pm/V. Fatigue measurements were conducted on all compositions and while the 1% Bi(Mg1/2Ti1/2)O3 composition exhibited a measurable, but small loss in maximum strain after a million cycles; all the other compositions from 2.5% to 10% Bi(Mg1/2Ti1/2)O3 were essentially fatigue-free. Lastly, optical and alternating current impedance measurements were employed to identify intrinsic conduction as the dominant conduction mechanism. These compositions were also highly insulating with high resistivities (∼107 Ω-cm) at high temperatures (440 °C).

1.
W. J.
Foster
,
J. K.
Meen
, and
D. A.
Fox
,
Cutan. Ocul. Toxicol.
32
,
18
(
2013
).
2.
Y.
Saito
,
H.
Takao
,
T.
Tani
,
T.
Nonoyama
,
K.
Takatori
,
T.
Homma
,
T.
Nagaya
, and
M.
Nakamura
,
Nature
432
,
84
(
2004
).
3.
E. A.
Patterson
and
D. P.
Cann
,
Appl. Phys. Lett.
101
,
042905
(
2012
).
4.
E. A.
Patterson
and
D. P.
Cann
,
J. Adv. Dielectr.
1
,
345
(
2011
).
5.
H.
Simons
,
J.
Daniels
,
W.
Jo
,
R.
Dittmer
,
A.
Studer
,
M.
Avdeev
,
J.
Rodel
, and
M.
Hoffman
,
Appl. Phys. Lett.
98
,
082901
(
2011
).
6.
E. A.
Patterson
,
D. P.
Cann
,
J.
Pokorny
, and
I. M.
Reaney
,
J. Appl. Phys.
111
,
094105
(
2012
).
7.
W.
Zhao
,
J.
Ya
,
Y.
Xin
,
L. E. D.
Zhao
, and
H.
Zhou
,
J. Am. Ceram. Soc.
92
,
1607
(
2009
).
8.
V. A.
Isupov
,
Ferroelectrics
315
,
123
(
2005
).
9.
S. T.
Zhang
,
A. B.
Kounga
,
E.
Aulbach
,
H.
Ehrenberg
, and
J.
Rodel
,
Appl. Phys. Lett.
91
,
112906
(
2007
).
10.
P.
Jarupoom
,
E.
Patterson
,
B.
Gibbons
,
G.
Rujijanagul
,
R.
Yimnirun
, and
D.
Cann
,
Appl. Phys. Lett.
99
,
152901
(
2011
).
11.
A. B.
Kounga
,
S. T.
Zhang
,
W.
Jo
,
T.
Granzow
, and
J.
Rodel
,
Appl. Phys. Lett.
92
,
222902
(
2008
).
12.
W.
Jo
,
T.
Granzow
,
E.
Aulbach
,
J.
Rodel
, and
D.
Damjanovic
,
J. Appl. Phys.
105
,
094102
(
2009
).
13.
T.
Takenaka
,
H.
Nagata
, and
Y.
Hiruma
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
56
,
1595
(
2009
).
14.
R.
Zuo
,
X.
Fang
,
C.
Ye
, and
L.
Li
,
J. Am. Ceram. Soc.
90
,
2424
(
2007
).
15.
E. A.
Patterson
and
D. P.
Cann
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
58
,
1835
(
2011
).
16.
S.
Zhang
,
T. R.
Shrout
,
H.
Nagata
,
Y.
Hiruma
, and
T.
Takenaka
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
54
,
910
(
2007
).
17.
E. A.
Patterson
and
D. P.
Cann
,
J. Am. Ceram. Soc.
95
,
3509
(
2012
).
18.
G. A.
Smolenskii
and
A. I.
Agranovskaya
,
Sov. Phys. Solid State
1
,
1429
(
1960
).
19.
W.
Jo
,
R.
Dittmer
,
M.
Acosta
,
J.
Zang
,
C.
Groh
,
E.
Sapper
,
K.
Wang
, and
J.
Rödel
,
J. Electroceram.
29
,
71
(
2012
).
20.
N.
Balke
,
H.
Kungl
,
T.
Granzow
,
D. C.
Lupascu
,
M. J.
Hoffmann
, and
J.
Rödel
,
J. Am. Ceram. Soc.
90
,
3869
(
2007
).
21.
Z.
Luo
,
J.
Glaum
,
T.
Granzow
,
W.
Jo
,
R.
Dittmer
,
M.
Hoffman
, and
J.
Rödel
,
J. Am. Ceram. Soc.
94
,
529
(
2011
).
22.
Z.
Luo
,
T.
Granzow
,
J.
Glaum
,
W.
Jo
,
J.
Rödel
, and
M.
Hoffman
,
J. Am. Ceram. Soc.
94
,
3927
(
2011
).
23.
J.
Nuffer
,
D.
Lupascu
, and
J.
Rödel
,
Acta Mater.
48
,
3783
(
2000
).
24.
J. J.
Dih
and
R. M.
Fulrath
,
J. Am. Ceram. Soc.
61
,
448
(
1978
).
25.
J.
Klaas
,
G.
Schulz-Ekloff
, and
N. I.
Jaeger
,
J. Phys. Chem. B
101
,
1305
(
1997
).
26.
J.
Tauc
,
R.
Grigorovici
, and
A.
Vancu
,
Phys. Status Solidi B
15
,
627
(
1966
).
27.
T.
Umebayashi
,
T.
Yamaki
,
H.
Itoh
, and
K.
Asai
,
Appl. Phys. Lett.
81
,
454
(
2002
).
28.
F. D.
Morrison
,
D. C.
Sinclair
, and
A. R.
West
,
J. Appl. Phys.
86
,
6355
(
1999
).
29.
D. C.
Lupascu
,
Fatigue in Ferroelectric Ceramics and Related Issues
(
Springer
,
Berlin
,
2004
).
30.
M.
Ehmke
,
J.
Glaum
,
W.
Jo
,
T.
Granzow
, and
J.
Rödel
,
J. Am. Ceram. Soc.
94
,
2473
(
2011
).
31.
H.
Simons
,
J.
Glaum
,
J. E.
Daniels
,
A. J.
Studer
,
A.
Liess
,
J.
Rödel
, and
M.
Hoffman
,
J. Appl. Phys.
112
,
044101
(
2012
).
You do not currently have access to this content.