The growth mechanisms and optical characteristics of GaSb quantum rings (QRs) are investigated. Although As-for-Sb exchange is the mechanism responsible for the dot-to-ring transition, significant height difference between GaSb quantum dots (QDs) and QRs in a dot/ring mixture sample suggests that the dot-to-ring transition is not a spontaneous procedure. Instead, it is a rapid transition procedure as long as it initiates. A model is established to explain this phenomenon. Larger ring inner diameters and heights of the sample with longer post Sb soaking time suggest that As-for-Sb exchange takes places in both vertical and lateral directions. The decreasing ring densities, enlarged ring inner/outer diameters and eventually flat GaSb surfaces observed with increasing growth temperatures are resulted from enhanced adatom migration and As-for-Sb exchange with increasing growth temperatures.

1.
V. M.
Ustinov
and
A. E.
Zhukov
,
Semicond. Sci. Technol.
15
,
R41
(
2000
).
2.
J.
Tatebayashi
,
A.
Khoshakhlagh
,
S. H.
Huang
,
G.
Balakrishnan
,
L. R.
Dawson
,
D. L.
Huffaker
,
D. A.
Bussian
,
H.
Htoon
, and
V.
Klimov
,
Appl. Phys. Lett.
90
,
261115
(
2007
).
3.
A.
Luque
and
A.
Martí
,
Phys. Rev. Lett.
78
,
5014
(
1997
).
4.
D.
Bimberg
,
M.
Grundmann
, and
N. N.
Ledentsov
,
Quantum Dot Heterostructures
(
Wiley
,
New York
,
1999
).
5.
D.
Englund
,
D.
Fattal
,
E.
Waks
,
G.
Solomon
,
B.
Zhang
,
T.
Nakaoka
,
Y.
Arakawa
,
Y.
Yamamoto
, and
J.
Vučković
,
Phys. Rev. Lett.
95
,
013904
(
2005
).
6.
K.
Nishi
,
H.
Saito
,
S.
Sugou
, and
J. S.
Lee
,
Appl. Phys. Lett.
74
,
1111
(
1999
).
7.
D. L.
Huffaker
,
G.
Park
,
Z.
Zhou
,
O. B.
Shchekin
, and
D. G.
Deppe
,
Appl. Phys. Lett.
73
,
2564
(
1998
).
8.
C.
Balocco
,
A. M.
Song
and
M.
Missous
,
Appl. Phys. Lett.
85
,
5911
(
2004
).
9.
S. F.
Tang
,
S. Y.
Lin
and
S. C.
Lee
,
Appl. Phys. Lett.
78
,
2428
(
2001
).
10.
A.
Marent
,
M.
Geller
,
A.
Schliwa
,
D.
Feise
,
K.
Pötschke
,
D.
Bimberg
,
N.
Akçay
and
N.
Öncan
,
Appl. Phys. Lett.
91
,
242109
(
2007
).
11.
S. Y.
Lin
,
C. C.
Tseng
,
W. H.
Lin
,
S. C.
Mai
,
S. Y.
Wu
,
S. H.
Chen
and
J. I.
Chyi
,
Appl. Phys. Lett.
96
,
123503
(
2010
).
12.
C. C.
Tseng
,
S. C.
Mai
,
W. H.
Lin
,
S. Y.
Wu
,
B. Y.
Yu
,
S. H.
Chen
,
S. Y.
Lin
,
J. J.
Shyue
and
M. C.
Wu
,
IEEE J. Quantum Electron.
47
,
335
(
2011
).
13.
R.
Timm
,
A.
Lenz
,
H.
Eisele
,
L.
Ivanova
,
M.
Dähne
,
G.
Balakrishnan
,
D. L.
Huffaker
,
I.
Farrer
and
D. A.
Ritchie
,
J. Vac. Sci. Technol. B
26
,
1492
(
2008
).
14.
R.
Timm
,
H.
Eisele
,
A.
Lenz
,
L.
Ivanova
,
G.
Balakrishnan
,
D. L.
Huffaker
, and
M.
Dähne
,
Phys. Rev. Lett.
101
,
256101
(
2008
).
15.
R. J.
Young
,
E. P.
Smakman
,
A. M.
Sanchez
,
P.
Hodgson
,
P. M.
Koenraad
, and
M.
Hayne
,
Appl. Phys. Lett.
100
,
082104
(
2012
).
16.
K.
Suzuki
,
R. A.
Hogg
, and
Y.
Arakawa
,
J. Appl. Phys.
85
,
8349
(
1999
).
17.
F.
Hatami
,
N. N.
Ledentsov
,
M.
Grundmann
,
J.
Böhrer
,
F.
Heinrichsdorff
,
M.
Beer
,
D.
Bimberg
,
S. S.
Ruvimov
,
P.
Werner
,
U.
Gösele
,
J.
Heydenreich
,
S. V.
Ivanov
,
B.
Ya. Meltser
,
P. S.
Kop'ev
, and
Zh. I.
Alferov
,
Appl. Phys. Lett.
67
,
656
(
1995
).
18.
S.
Kobayashi
,
C.
Jiang
,
T.
Kawazu
, and
H.
Sakaki
,
Jpn. J. Appl. Phys., Part 2
43
,
L662
(
2004
).
19.
W. H.
Lin
,
M. Y.
Lin
,
S. Y.
Wu
, and
S. Y.
Lin
,
IEEE Photon. Technol. Lett.
24
,
1203
(
2012
).
20.
W. H.
Lin
,
K. W.
Wang
,
S. W.
Chang
,
M. H.
Shih
, and
S. Y.
Lin
,
Appl. Phys. Lett.
101
,
031906
(
2012
).
You do not currently have access to this content.