The diffusion of Li atoms deposited on hydrogen-passivated Si(001) surfaces, chemically oxidized Si(001) surfaces, Si nanoparticle films, and thick SiO2 layers is investigated with electron-beam induced Auger electron spectroscopy. The nanoparticles exhibit an average diameter of 24 nm. The Li metal film is evaporated at a sample temperature below 120 K. The reappearance of the Si substrate Auger signal as a function of time and temperature can be measured to study the Li diffusion into the bulk material. Values for the diffusion barrier of 0.5 eV for H:Si(001) and 0.3 eV for the ox-Si(001) and Si nanoparticle films are obtained. The diffusion of the Li atoms results in the disruption of the crystalline Si surfaces observed with atomic force microscopy. Contrasting to that, the Si nanoparticle films show less disruption by Li diffusion due to filling of the porous films detected with cross section electron microscopy. Silicon dioxide acts as a diffusion barrier for temperatures up to 300 K. However, the electron beam induces a reaction between Li and SiO2, leading to LiOx and elemental Si floating on the surface.

1.
J.-M.
Tarascon
and
M.
Armand
,
Nature
414
,
359
(
2001
);
[PubMed]
J.-M.
Tarascon
and
M.
Armand
,
Nature
451
,
652
(
2008
).
[PubMed]
2.
K. E.
Aifantis
and
S. A.
Hackney
,
J. Power Sources
196
,
2122
(
2011
).
3.
R.
Fong
,
R. U.
von Sacken
, and
J. R.
Dahn
,
J. Electrochem. Soc.
137
,
2009
(
1990
).
4.
L. Y.
Beaulieu
,
K. W.
Eberman
,
R. L.
Turner
,
L. J.
Krause
, and
J. R.
Dahn
,
Electrochem. Solid-State Lett.
4
,
A137
(
2001
).
5.
H.
Kim
,
C.-Y.
Chou
,
J. G.
Ekerdt
, and
G. S.
Hwang
,
J. Phys. Chem. C
115
,
2514
(
2011
).
6.
S. W.
Lee
,
M. T.
McDowell
,
L. A.
Berla
,
W. D.
Nix
, and
Y.
Cui
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
4080
(
2012
).
7.
C. K.
Chan
,
H.
Peng
,
G.
Liu
,
K.
McIlwrath
,
X. F.
Zhang
,
R. A.
Huggins
, and
Y.
Cui
,
Nat. Nanotechnol.
3
,
31
(
2008
).
8.
H. K.
Liu
,
G. X.
Wang
,
Z.
Guo
,
J.
Wang
, and
K.
Konstanticov
,
J. Nanosci. Nanotechnol.
6
,
1
(
2006
).
9.
J.
Niu
and
J. Y.
Lee
,
Electrochem. Solid-State Lett.
5
,
A107
(
2002
).
10.
G. H.
Vineyard
,
J. Phys. Chem. Solids
3
,
121
(
1957
).
11.
L. T.
Canham
, in
Properties of Silicon
, Electronic Materials Information Service (EMIS), Datareviews Series No. 4, edited by
K. V.
Ravi
,
N.
Hecking
,
W.
Fengwei
,
Z.
Xiangqin
, and
L. N.
Alexsandrev
(
INSPEC
,
London
,
1988
), p.
455f
.
12.
E. M.
Pell
,
Phys. Rev.
119
,
1014
, 1222 (
1960
).
13.
A.
Keffous
,
T.
Hadjersi
,
A.
Cheriet
,
K.
Bourenane
,
N.
Gabouze
,
Y.
Boukennous
,
F.
Kezzoula
,
M.
Amini Zitouni
, and
H.
Menari
,
Vacuum
81
,
417
(
2006
).
14.
V.
Milman
,
M. C.
Payne
,
V.
Heine
,
R. J.
Needs
,
J. S.
Lin
, and
M. H.
Lee
,
Phys. Rev. Lett.
70
,
2928
(
1993
).
15.
G. A.
Tritsaris
,
K.
Zhao
,
O. U.
Okeke
, and
E.
Kaxiras
,
J. Phys. Chem. C
116
,
22212
(
2012
).
16.
T.-L.
Chan
and
J. R.
Chelikowsky
,
Nano Lett.
10
,
821
(
2010
).
17.
B.
Peng
,
F.
Cheng
,
Z.
Tao
, and
J.
Chen
,
J. Chem. Phys.
133
,
034701
(
2010
).
18.
W.
Wan
,
Q.
Zhang
,
Y.
Cui
, and
E.
Wang
,
J. Phys: Condens. Matter
22
,
415501
(
2010
).
19.
S. C.
Jung
and
Y.-K.
Han
,
Phys. Chem. Chem. Phys.
13
,
21282
(
2011
).
20.
Z. I.
Popov
,
A. S.
Fedorov
,
A. A.
Kuzubov
, and
T. A.
Kozhevnikova
,
J. Struct. Chem.
52
,
861
(
2011
).
21.
N.
Petermann
,
N.
Stein
,
G.
Schierning
,
R.
Theissmann
,
B.
Stoib
,
M. S.
Brandt
,
C.
Hecht
,
C.
Schulz
, and
H.
Wiggers
,
J. Phys. D: Appl. Phys.
44
,
174034
(
2011
).
You do not currently have access to this content.