The demand for analysis of smaller samples in isotopic ratio measurements of rare isotopes is continuously rising with the development of new applications, particularly in biomedicine. Interesting in this aspect are methods based on optogalvanic spectroscopy, which have been reported to facilitate both 13C-to-12C and 14C-to-12C ratio measurements with high sensitivity. These methods also facilitate analysis of very small samples, down to the microgram range, which makes them very competitive to other technologies, e.g., accelerator mass spectroscopy. However, there exists a demand for moving beyond the microgram range, especially from regenerative medicine, where samples consist of, e.g., DNA, and, hence, the total sample amount is extremely small. Making optogalvanic spectroscopy of carbon isotopes applicable to such small samples, requires miniaturization of the key component of the system, namely the plasma source, in which the sample is ionized before analysis. In this paper, a novel design of such a microplasma source based on a stripline split-ring resonator is presented and evaluated in a basic optogalvanic spectrometer. The investigations focus on the capability of the plasma source to measure the optogalvanic signal in general, and the effect of different system and device specific parameters on the amplitude and stability of the optogalvanic signal in particular. Different sources of noise and instabilities are identified, and methods of mitigating these issues are discussed. Finally, the ability of the cell to handle analysis of samples down to the nanogram range is investigated, pinpointing the great prospects of stripline split-ring resonators in optogalvanic spectroscopy.

1.
C.
Bronk Ramsey
, “
Radiocarbon dating: Revolutions in understanding
,”
Archaeometry
50
,
249
275
(
2008
).
2.
W. F.
Libby
, “
Perspectives: radiocarbon dating
,”
Am. Sci.
44
,
98
112
(
1956
), available at http://www.jstor.org/stable/27826732.
3.
J.
Fabryka-Martin
,
H.
Bentley
,
D.
Elmore
, and
P. L.
Airey
, “
Natural iodine-129 as an environmental tracer
,”
Geochim. Cosmochim. Acta
49
,
337
347
(
1985
).
4.
K.
Nishiizumi
,
C. P.
Kohl
,
J. R.
Arnold
,
R.
Dorn
,
I.
Klein
,
D.
Fink
,
R.
Middleton
, and
D.
Lal
, “
Role of in situ cosmogenic nuclides 10Be and 26Al in the study of diverse geomorphic processes
,”
Earth Surf. Process. Landforms
18
,
407
425
(
1993
).
5.
G.
Lappin
and
R. C.
Garner
, “
Big physics, small doses: The use of AMS and PET in human microdosing of development drugs
,”
Nat. Rev. Drug Discov.
2
,
233
240
(
2003
).
6.
M.
Salehpour
,
G.
Possnert
, and
H.
Bryhni
, “
Subattomole sensitivity in biological accelerator mass spectrometry
,”
Anal. Chem.
80
,
3515
3521
(
2008
).
7.
K. L.
Spalding
,
E.
Arner
,
P. O.
Westermark
,
S.
Bernard
,
B. A.
Buchholz
,
O.
Bergmann
,
L.
Blomqvist
,
J.
Hoffstedt
,
E.
Naslund
,
T.
Britton
,
H.
Concha
,
M.
Hassan
,
M.
Ryden
,
J.
Frisen
, and
P.
Arner
, “
Dynamics of fat cell turnover in humans
,”
Nature (London)
453
,
783
787
(
2008
).
8.
H.
Polach
, “
Evaluation and status of liquid scintillation counting for radiocarbon dating
,”
Radiocarbon
29
,
1
11
(
1987
), available at https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/1030/1035.
9.
E.
Rapkin
, “
Liquid scintillation counting 1957–1963: A review
,”
Int. J.Appl. Radiat. Isot.
15
,
69
87
(
1964
).
10.
S.-H.
Kim
,
P. B.
Kelly
, and
A. J.
Clifford
, “
Accelerator mass spectrometry targets of submilligram carbonaceous samples using the high-throughput zn reduction method
,”
Anal. Chem.
81
,
5949
5954
(
2009
).
11.
M.
Ruff
,
L.
Wacker
,
H. W.
Gäggler
,
M.
Suter
,
H. A.
Synal
, and
S.
Szidat
, “
A gas ion source for radiocarbon measurements at 200 kV
,”
Radiocarbon
49
,
307
314
(
2007
), available at https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/2930.
12.
T. J.
Ognibene
,
G.
Bench
,
J. S.
Vogel
,
G. F.
Peaslee
, and
S.
Murov
, “
A high-throughput method for the conversion of CO2 obtained from biochemical samples to graphite in septa-sealed vials for quantification of 14C via accelerator mass spectrometry
,”
Anal. Chem.
75
,
2192
2196
(
2003
).
13.
I.
Galli
,
S.
Bartalini
,
S.
Borri
,
P.
Cancio
,
D.
Mazzotti
,
P.
De Natale
, and
G.
Giusfredi
, “
Molecular gas sensing below parts per trillion: Radiocarbon-dioxide optical detection
,”
Phys. Rev. Lett.
107
,
270802
(
2011
).
14.
D. E.
Murnick
,
O.
Dogru
, and
E.
Ilkmen
, “
Intracavity optogalvanic spectroscopy. an analytical technique for 14C analysis with subattomole sensitivity
,”
Anal. Chem.
80
,
4820
4824
(
2008
).
15.
G.
Eilers
,
A.
Persson
,
C.
Gustavsson
,
L.
Ryderfors
,
E.
Mukhtar
,
G.
Possnert
, and
M.
Salehpour
, “
The radiocarbon intracavity optogalvanic spectroscopy setup at Uppsala
,”
Radiocarbon
55
,
3
4
(
2013
).
16.
E.
Ilkmen
, “
Intracavity optogalvanic spectroscopy—radiocarbon analysis with attomole sensitivity
,” Ph.D. dissertation (
Department of Physics, Rutgers, Newark, NJ
,
2009
).
17.
D. E.
Murnick
and
B. J.
Peer
, “
Laser-based analysis of carbon isotope ratios
,”
Science
263
,
945
947
(
1994
).
18.
J. R.
de Laeter
,
J. K.
Böhlke
,
P.
De Bièvre
,
H.
Hidaka
,
H. S.
Peiser
,
K. J. R.
Rosman
, and
P. D. P.
Taylor
, “
Atomic weights of the elements. Review 2000
,”
Pure Appl. Chem.
75
,
683
800
(
2003
).
19.
A.
Persson
,
G.
Eilers
,
L.
Ryderfors
,
E.
Mukhtar
,
G.
Possnert
, and
M.
Salehpour
, “
Evaluation of intracavity optogalvanic spectroscopy for radiocarbon measurements
,”
Anal. Chem.
(published online).
20.
R. D.
May
and
P. H.
May
, “
Solid-state radio frequency oscillator for optogalvanic spectroscopy: Detection of nitric oxide using the 2-0 overtone transition
,”
Rev. Sci. Instr.
57
,
2242
2245
(
1986
).
21.
F.
Iza
and
J.
Hopwood
, “
Split-ring resonator microplasma: Microwave model, plasma impedance and power efficiency
,”
Plasma Sources Sci. Technol.
14
,
397
(
2005
).
22.
J. E. M.
Goldsmith
and
J. E.
Lawler
, “
Optogalvanic spectroscopy
,”
Contem. Phys.
22
,
235
248
(
1981
).
23.
S.
Moffatt
and
A. L. S.
Smith
, “
Temperature perturbation model of the opto-galvanic effect in CO2 laser discharges
,”
J. Phys. D
17
,
59
(
1984
).
24.
M.
Berglund
,
G.
Thornell
, and
A.
Persson
, “
Evaluation of a microplasma source based on a stripline split-ring resonator
,”
Plasma Sources Sci. Technol.
(submitted).
25.
V.
Lekholm
,
K.
Palmer
, and
G.
Thornell
, “
Schlieren imaging of microthruster exhausts for qualitative and quantitative analysis
,”
Measur. Sci. Technol.
23
,
085403
(
2012
).
26.
A.
Persson
,
R.
Bejhed
,
H.
Nguyen
,
K.
Gunnarsson
,
B. T.
Dalslet
,
F. W.
Østerberg
, and
M. F.
Hansen
, “
Low–frequency noise in planar Hall effect bridge sensors
,”
Sens. Actuat. A
171
,
212
218
(
2011
).
27.
X.
Zhang
and
G.
Hu
, “
1/f noise in a two-lane highway traffic model
,”
Phys. Rev. E
52
,
4664
4668
(
1995
).
28.
F. N.
Hooge
, “
1/ƒ noise is no surface effect
,”
Phys. Lett. A
29
,
139
140
(
1969
).
You do not currently have access to this content.