Ultraviolet photocarrier radiometry (UV-PCR) was used for the characterization of thin-film (nanolayer) intrinsic hydrogenated amorphous silicon (i-a-Si:H) on c-Si. The small absorption depth (approximately 10 nm at 355 nm laser excitation) leads to strong influence of the nanolayer parameters on the propagation and recombination of the photocarrier density wave (CDW) within the layer and the substrate. A theoretical PCR model including the presence of effective interface carrier traps was developed and used to evaluate the transport parameters of the substrate c-Si as well as those of the i-a-Si:H nanolayer. Unlike conventional optoelectronic characterization methods such as photoconductance, photovoltage, and photoluminescence, UV-PCR can be applied to more complete quantitative characterization of a-Si:H/c-Si heterojunction solar cells, including transport properties and defect structures. The quantitative results elucidate the strong effect of a front-surface passivating nanolayer on the transport properties of the entire structure as the result of effective a-Si:H/c-Si interface trap neutralization through occupation. A further dramatic improvement of those properties with the addition of a back-surface passivating nanolayer is observed and interpreted as the result of the interaction of the increased excess bulk CDW with, and more complete occupation and neutralization of, effective front interface traps.

1.
Y.
Tsunomura
,
Y.
Yoshimine
,
M.
Taguchi
,
T.
Baba
,
T.
Kinoshita
,
H.
Kanno
,
H.
Sakata
,
E.
Maruyama
, and
M.
Tanaka
,
Sol. Energy Mater. Sol. Cells
93
,
670
(
2009
).
2.
T.
Mishima
,
M.
Taguchi
,
H.
Sakata
, and
E.
Maruyama
,
Sol. Energy Mater. Sol. Cells
95
,
18
(
2011
).
3.
J.
Ge
,
Z. P.
Ling
,
J.
Wong
,
T.
Mueller
, and
A. G.
Aberle
,
Energy Procedia
15
,
107
(
2012
).
4.
S.
Olibet
,
E.
Vallat-Sauvain
,
L.
Fesquet
,
C.
Momachon
,
A.
Hessler-Wyser
,
J.
Damon-Lacoste
,
S. D.
Wolf
, and
C.
Ballif
,
Phys. Status Solidi A
207
,
651
(
2010
).
5.
P. J.
Drummond
,
D.
Bhatia
,
A.
Kshirsagar
,
S.
Ramani
, and
J.
Ruzyllo
,
Thin Solid Films
519
,
7621
(
2011
).
6.
L.
Korte
,
A.
Laades
, and
M.
Schmidt
,
J. Non-Cryst. Solids
352
,
1217
(
2006
).
7.
A.
Salnick
and
A.
Mandelis
,
J. Appl. Phys.
80
,
5278
(
1996
).
8.
S.
Ilahi
,
N.
Yacoubi
, and
F.
Genty
,
J. Appl. Phys.
113
,
183705
(
2013
).
9.
B.
Li
,
D.
Shaughnessy
,
A.
Mandelis
, and
J.
Batista
,
J. Appl. Phys.
95
,
7832
(
2004
).
10.
A.
Othonos
,
A.
Salnik
,
A.
Mandelis
, and
C.
Christofides
,
Phys. Status Solidi A
161
,
R13
(
1997
).
11.
S.
Tardon
and
R.
Brügemann
,
J. Phys. D: Appl. Phys.
43
,
115102
(
2010
).
12.
A.
Mandelis
,
Diffusion-Wave Fields: Mathematical Methods and Green Functions
(
Springer
,
New York
,
2001
), Chap. 9.
13.
A.
Mandelis
,
J.
Batista
, and
D.
Shaughnessy
,
Phys. Rev. B
67
,
205208
(
2003
).
14.
A.
Melnikov
,
B.
Halliop
,
A.
Mandelis
, and
N. P.
Kherani
,
Thin Solid Films
520
,
5309
(
2012
).
15.
J.
Tolev
,
A.
Mandelis
, and
M.
Pawlak
,
J. Electrochem. Soc.
154
,
H983
(
2007
).
16.
D.
Shaughnessy
and
A.
Mandelis
,
J. Electrochem. Soc.
153
,
G283
(
2006
).
17.
R. A.
Street
,
Hydrogenated Amorphous Silicon
(
Cambridge University Press
,
Cambridge, New York
,
1991
).
18.
A.
Yamaguchi
,
K.
Murayama
,
T.
Tada
, and
T.
Ninomiya
,
J. Non-Cryst. Solids
97-98
,
1199
(
1987
).
19.
D.
Han
,
K.
Wang
,
Ch.
Yeh
,
L.
Yang
,
X.
Deng
, and
B. V.
Roedern
,
Phys. Rev. B
55
,
15619
(
1997
).
20.
M. A.
Green
,
Sol. Energy Mater. Sol. Cells
92
,
1305
(
2008
).
21.
B.
Li
,
D.
Shaughnessy
,
A.
Mandelis
,
J.
Batista
, and
J.
Garcia
,
J. Appl. Phys.
96
,
186
(
2004
).
22.
J. M.
Dorkel
and
P
Leturgo
,
Solid State Electron.
24
,
821
(
1981
).
23.
C.-M.
Li
,
T.
Sjodin
, and
H. -Lung
Dai
,
Phys. Rev. B
56
,
15252
(
1997
).
24.
B.
Abrams
and
P. H.
Holloway
,
Chem. Rev.
104
,
5783
(
2004
).
25.
A.
Mandelis
,
J. Appl. Phys.
97
,
083508
(
2005
).
You do not currently have access to this content.