Co-Ti and Ru-Ti substituted barium ferrite nanocrystalline particles BaFe12−2xCoxTixO19 with (0x1) and BaFe12−2xRuxTixO19 with (0x0.6) were prepared by ball milling method, and their magnetic properties and their temperature dependencies were studied. The zero-field-cooled (ZFC) and field-cooled (FC) processes were recorded at low magnetic fields and the ZFC curves displayed a broad peak at a temperature TM. In all samples under investigation, a clear irreversibility between the ZFC and FC curves was observed below room temperature, and this irreversibility disappeared above room temperature. These results were discussed within the framework of random particle assembly model and associated with the magnetic domain wall motion. The resistivity data showed some kind of a transition from insulator to perfect insulator around TM. At 2 K, the saturation magnetization slightly decreased and the coercivity dropped dramatically with increasing the Co-Ti concentration x. With Ru-Ti substitution, the saturation magnetization showed small variations, while the coercivity decreased monotonically, recording a reduction of about 73% at x = 0.6. These results were discussed in light of the single ion anisotropy model and the cationic distributions based on previously reported neutron diffraction data for the CoTi substituted system, and the results of our Mössbauer spectroscopy data for the RuTi substituted system.

1.
R. C.
Pullar
,
Prog. Mater. Sci.
57
,
1191
(
2012
).
2.
Ü.
Özgür
,
Y.
Alivov
, and
H. J.
Morkoç
,
J. Mater. Sci.: Mater. Electron
20
,
789
(
2009
).
3.
T.
Kimura
,
Annu. Rev. Condens. Matter Phys.
3
,
93
(
2012
).
4.
G.
Tan
and
X.
Chen
,
J. Magn. Magn. Mater.
327
,
87
(
2013
).
5.
Y. Y.
Meng
,
M. H.
He
,
Q.
Zeng
,
D. L.
Jiao
,
S.
Shukla
,
R. V.
Ramanujan
, and
Z. W.
Liu
,
J. Alloys Compd.
583
,
220
(
2014
).
6.
J.
Kreisel
,
H.
Vincent
,
F.
Tasset
, and
P.
Wolfers
,
J. Magn. Magn. Mater.
213
,
262
(
2000
).
7.
G.
Li
,
G.
Hu
,
H.
Zhou
,
X.
Fan
, and
X.
Li
,
Mater. Chem. Phys.
75
,
101
(
2002
).
8.
G. -H.
An
,
T. -Y.
Hwang
,
J.
Kim
,
JB.
Kim
,
N.
Kang
,
S.
Kim
,
Y. -m.
Choi
, and
Y. -H.
Choa
,
J. Alloys Compd.
583
,
145
(
2014
).
9.
K. S.
Moghaddam
and
A.
Ataie
,
J. Alloys Compd.
426
,
415
(
2006
).
10.
I.
Ali
,
M. U.
Islam
,
M. S.
Awan
, and
M.
Ahmad
,
J. Alloys Compd.
547
,
118
(
2013
).
11.
M.
Drofenik
,
I.
Ban
,
D.
Makovec
,
A.
Žnidaršič
,
Z.
Jagličić
,
D.
Hanžel
, and
D.
Lisjak
,
Mater. Chem. Phys.
127
,
415
(
2011
).
12.
U.
Topal
,
H.
Ozkan
, and
L.
Dorosinskii
,
J. Alloys Compd.
428
,
17
(
2007
).
13.
Y. P.
Fu
,
C. H.
Lin
, and
K. Y.
Pan
,
J. Appl. Phys.
42
,
2681
(
2003
).
14.
A.
Ataie
and
S. E.
Zojaji
,
J. Alloys Compd.
431
,
331
(
2007
).
15.
V.
Babu
and
P.
Padaikathan
,
J. Magn. Magn. Mater.
241
,
85
(
2002
).
16.
I.
Bsoul
,
S. H.
Mahmood
,
A. -F.
Lelooh
, and
A.
Al-Jamel
,
J. Alloys Compd.
551
,
490
(
2013
).
17.
M.
Awawdeh
,
I.
Bsoul
, and
S. H.
Mahmood
,
J. Alloys Compd.
585
,
465
(
2014
).
18.
T. M.
Clark
,
B. J.
Evans
, and
G. K.
Thomson
,
J. Appl. Phys.
85
(
8
),
5229
(
1999
).
19.
I.
Bsoul
and
S. H.
Mahmood
,
J. Alloys Compd.
489
,
110
(
2010
).
20.
X.
Tang
,
Y.
Yang
, and
K.
Hu
,
J. Alloys Compd.
477
,
488
(
2009
).
21.
Ch.
Venkateshwarlu
,
Ch.
Ashok
,
B. A.
Rao
,
D.
Ravinder
, and
B. S.
Boyanov
,
J. Alloys Compd.
426
,
1
(
2006
).
22.
X.
Gao
,
Y.
Du
,
X.
Liu
,
P.
Xu
, and
X.
Han
,
Mater. Res. Bull.
46
,
643
(
2011
).
23.
M. J.
Iqbal
,
M. N.
Ashiq
, and
P. H.
Gomez
,
J. Alloys Compd.
478
,
736
(
2009
).
24.
G.
Litsardakis
,
I.
Manolakis
, and
K.
Efthimiadis
,
J. Alloys Compd.
427
,
194
(
2007
).
25.
G. H.
Dushaq
,
S. H.
Mahmood
,
I.
Bsoul
,
H. K.
Juwhari
,
B.
Lahlouh
, and
M. A.
AlDamen
,
Acta Metall. Sin. (Eng. Lett.)
26
,
509
(
2013
).
26.
A.
González-Angeles
,
G.
Mendoza-Suárez
,
A.
Grusková
,
J.
Lipka
,
M.
Papánová
, and
J.
Sláma
,
J. Magn. Magn. Mater.
285
,
450
(
2005
).
27.
I.
Bsoul
,
S. H.
Mahmood
, and
A.-F.
Lehlooh
,
J. Alloys Compd.
498
,
157
(
2010
).
28.
W.
Zhang
,
Y.
Bai
,
X.
Han
,
L.
Wang
,
X.
Lu
, and
L.
Qiao
,
J. Alloys Compd.
546
,
234
(
2013
).
29.
F.
Tabatabaie
,
M. H.
Fathi
,
A.
Saatchi
, and
A.
Ghasemi
,
J. Alloys Compd.
474
,
206
(
2009
).
30.
S. Y.
An
,
I. B.
Shim
, and
C. S.
Kim
,
J. Appl. Phys.
91
,
8465
(
2002
).
31.
N.
Koga
and
T.
Tsutaoka
,
J. Magn. Magn. Mater.
313
,
168
(
2007
).
32.
G. B.
Teh
,
N.
Saravanan
, and
D. A.
Jefferson
,
Mater. Chem. Phys.
105
,
253
(
2007
).
33.
I.
Bsoul
,
Jordan J. Phys.
2
,
95
(
2009
).
34.
T.
Tsutaoka
and
N.
Koga
,
J. Magn. Magn. Mater.
325
,
36
(
2013
).
35.
P.
Gaunt
,
IEEE Trans. Magn.
19
,
2030
(
1983
).
36.
G.
Vértesy
,
I.
Tomaáš
, and
Z.
Vértesy
,
J. Phys. D: Appl. Phys.
35
,
625
(
2002
).
37.
X.
Batlle
,
M.
Garcìa del Muro
,
J.
Tejada
,
H.
Pfeiffer
,
P.
Görmert
, and
E.
Sinn
,
IEEE Trans. Magn.
30
,
708
(
1994
).
38.
X.
Batlle
,
M.
Garcìa del Muro
,
J.
Tejada
,
H.
Pfeiffer
,
P.
Görmert
, and
E.
Sinn
,
J. Appl. Phys.
74
,
3333
(
1993
).
39.
S. H.
Mahmood
and
I.
Bsoul
,
EPJ Web Conf.
29
,
00039
(
2012
).
40.
H.
Shang
,
J.
Wang
, and
Q.
Liu
,
Mater. Sci. Eng., A
456
,
130
(
2007
).
41.
B. D.
Cullity
and
C. D.
Graham
,
Introduction to Magnetic Materials
, 2nd ed. (
Wiley
,
Hoboken, NJ
,
2009
).
42.
P.
Wartewig
,
M. K.
Krause
,
P.
Esquinazi
,
S.
Rösler
, and
R.
Sonntag
,
J. Magn. Magn. Mater.
192
,
83
(
1999
).
43.
X.
Batlle
,
X.
Obradors
,
J.
Rodriguez-Carvajal
,
M.
Pernet
,
M. V.
Cabañas
, and
M.
Vallet
,
J. Appl. Phys.
70
,
1614
(
1991
).
44.
L.
Rezlescu
,
E.
Reslescu
, and
P. D.
Papo
,
J. Magn. Magn. Mater.
193
,
288
(
1999
).
You do not currently have access to this content.