Aurivillius Bi5Ti3FeO15 (BTFO) multiferroic ceramics with different Cr-doped concentrations have been synthesized by the conventional solid state reaction method. The influences of Cr-doping concentrations on the structural, magnetic, dielectric, and ferroelectric properties of BTFO ceramics are investigated in detail. All these sintered Cr-substituted BTFO ceramics are determined to be layered perovskite Aurivillius structure by X-ray diffraction, as well as the lattice parameters a, b, and c are in good accordance with Vegard's law along with the Cr-doping concentration. The lattice distortion a/b for Aurivillius family decreases with increasing Cr-doping concentration. Moreover, Cr-doping can promote greatly the grain growth of BTFO samples confirmed from field emission scanning electron microscopy characterization. However, no obvious signs of the improvement in ferroelectric properties are found in Cr-doped BTFO ceramics, and abnormal ferroelectric polarization versus electric field (P-E) loops are observed as Cr-doping content is beyond 0.1. Similar ε (tanδ) versus frequency plots to those of the BTFO sample are exhibited when Cr-doping concentration is less than 0.1. Nevertheless, obvious dielectric dispersion phenomena are shown as the Cr-doping concentration is beyond 0.1, and this dispersion behavior becomes strong with further increasing Cr-doping concentration, which are clearly indicated by the appearance of dielectric loss relaxation peaks in the measurement frequency from 102 Hz to 106 Hz. In addition, the corresponding frequency to relaxation peak shifts towards high frequencies with the Cr-doping concentration. Finally, the same magnetic orderings for all these Cr-doped BTFO ceramics as those of the BTFO one, i.e., superparamagnetic state dominated with antiferromagnetic interaction, are unambiguously found, signifying that the predicted Fe3+-O-Cr3+ 180° ferromagnetic superexchange interaction based on the Goodenough-Kanamori (G-K) rule might not be achieved in BTFO ceramics through Cr substitution by the conventional solid state reaction.

1.
P. F.
Zhang
,
N.
Deepak
,
L.
Keeney
,
M. E.
Pemble
, and
R. W.
Whatmore
,
Appl. Phys. Lett.
101
,
112903
(
2012
).
2.
J. B.
Li
,
Y. P.
Huang
,
G. H.
Rao
,
G. Y.
Liu
,
J.
Luo
,
J. R.
Chen
, and
J. K.
Liang
,
Appl. Phys. Lett.
96
,
222903
(
2010
).
3.
J.
Yang
,
L. H.
Yin
,
Z.
Liu
,
X. B.
Zhu
,
W. H.
Song
,
J. M.
Dai
,
Z. R.
Yang
, and
Y. P.
Sun
,
Appl. Phys. Lett.
101
,
012402
(
2012
).
4.
Z.
Liu
,
J.
Yang
,
X. W.
Tang
,
L. H.
Yin
,
X. B.
Zhu
,
J. M.
Dai
, and
Y. P.
Sun
,
Appl. Phys. Lett.
101
,
122402
(
2012
).
5.
W.
Bai
,
Y. Q.
Gao
,
J. Y.
Zhu
,
X. J.
Meng
,
T.
Lin
,
J.
Yang
,
Z. Q.
Zhu
, and
J. H.
Chu
,
J. Appl. Phys.
109
,
064901
(
2011
).
6.
G.
Chen
,
W.
Bai
,
L.
Sun
,
J.
Wu
,
Q.
Ren
,
W. F.
Xu
,
J.
Yang
,
X. J.
Meng
,
X. D.
Tang
,
C. G.
Duan
, and
J. H.
Chu
,
J. Appl. Phys.
113
,
034901
(
2013
).
7.
X. W.
Dong
,
K. F.
Wang
,
J. G.
Wan
,
J. S.
Zhu
, and
J. M.
Liu
,
J. Appl. Phys.
103
,
094101
(
2008
).
8.
L.
Keeney
,
C.
Groh
,
S.
Kulkarni
,
S.
Roy
,
M. E.
Pemble
, and
R. W.
Whatmore
,
J. Appl. Phys.
112
,
024101
(
2012
).
9.
A.
Srinivas
,
S. V.
Suryanarayana
,
G. S.
Kumar
, and
M. M.
Kumar
,
J. Phys.: Condens. Matter
11
,
3335
(
1999
).
10.
X. Y.
Mao
,
W.
Wang
, and
X. B.
Chen
,
Solid State Commun.
147
,
186
(
2008
).
11.
K. F.
Wang
,
J. M.
Liu
, and
Z. F.
Ren
,
Adv. Phys.
58
,
321
(
2009
).
12.
J.
Ma
,
J.
Hu
,
Z.
Li
, and
C. W.
Nan
,
Adv. Mater.
23
,
1062
(
2011
).
13.
L. W.
Martin
,
Y. H.
Chu
, and
R.
Ramesh
,
Mater. Sci. Eng. R.
68
,
89
(
2010
).
14.
A.
Snedden
,
C.
Hervoches
, and
P.
Lightfoot
,
Phys. Rev. B
67
,
092102
(
2003
).
15.
C. H.
Hervoches
,
A.
Snedden
,
R.
Riggs
,
S. H.
Kilcoyne
,
P.
Manuel
, and
P.
Lightfoot
,
J. Solid State Chem.
164
,
280
(
2002
).
16.
S. M.
Sun
,
W. Z.
Wang
,
H. L.
Xu
,
L.
Zhou
,
M.
Shang
, and
L.
Zhang
,
J. Phys. Chem. C
112
,
17835
(
2008
).
17.
L.
Keeney
,
P. F.
Zhang
,
C.
Groh
,
M. E.
Pemble
, and
R. W.
Whatmore
,
J. Appl. Phys.
108
,
042004
(
2010
).
18.
R. S.
Singh
,
T.
Bhimasankaram
,
G. S.
Kumar
, and
S. V.
Suryanarayana
,
Solid State Commun.
91
,
567
(
1994
).
19.
X. Y.
Mao
,
W.
Wang
,
X. B.
Chen
, and
Y. L.
Lu
,
Appl. Phys. Lett.
95
,
082901
(
2009
).
20.
F. J.
Yang
,
P.
Su
,
C.
Wei
,
X. Q.
Chen
,
C. P.
Yang
, and
W. Q.
Cao
,
J. Appl. Phys.
110
,
126102
(
2011
).
21.
H.
Sun
,
X. M.
Lu
,
T. T.
Xu
,
J.
Su
,
Y. M.
Jin
,
C. C.
Ju
,
F. Z.
Huang
, and
J. S.
Zhu
,
J. Appl. Phys.
111
,
124116
(
2012
).
22.
X. Y.
Mao
,
H.
Sun
,
W.
Wang
,
X. B.
Chen
, and
Y. L.
Lu
,
Appl. Phys. Lett.
102
,
072904
(
2013
).
23.
L.
Keeney
,
S.
Kulkarni
,
N.
Deepak
,
M.
Schmidt
,
N.
Petkov
,
P. F.
Zhang
,
S.
Cavill
,
S.
Roy
,
M. E.
Pemble
, and
R. W.
Whatmore
,
J. Appl. Phys.
112
,
052010
(
2012
).
24.
L.
Keeney
,
T.
Maity
,
M.
Schmidt
,
A.
Amann
,
N.
Deepak
,
N.
Petkov
,
S.
Roy
,
M. E.
Pemble
, and
R. W.
Whatmore
,
J. Am. Ceram. Soc.
96
,
2339
(
2013
).
25.
J. B.
Goodenough
,
Phys. Rev.
100
,
564
(
1955
);
J.
Kanamori
,
J. Phys. Chem. Solids
10
,
87
(
1959
).
26.
K.
Ueda
,
H.
Tabata
, and
T.
Kawai
,
Science
280
,
1064
(
1998
).
27.
A.
Wold
and
W.
Croft
,
J. Phys. Chem.
63
,
447
(
1959
).
28.
A.
Belayachi
,
M.
Nogues
,
J. L.
Dormann
, and
M.
Taibi
,
Eur. J. Solid State Inorg. Chem.
33
,
1039
(
1996
).
29.
A. T.
Giddings
,
M. C.
Stennett
,
D. P.
Reid
,
E. E.
McCabe
,
C.
Greaves
, and
N. C.
Hyatt
,
J. Solid State Chem.
184
,
252
(
2011
).
30.
J. B.
Li
,
G. H.
Rao
,
J. K.
Liang
,
Y. H.
Liu
,
J.
Luo
, and
J. R.
Chen
,
Appl. Phys. Lett.
90
,
162513
(
2007
).
31.
M.
Oumezzine
,
O.
Peña
,
S.
Kallel
,
T.
Guizouarn
, and
M.
Oumezzine
,
J. Alloys Compd.
533
,
33
(
2012
).
32.
M. B.
Mohamed
,
H.
Wang
, and
H.
Fuess
,
J. Phys. D: Appl. Phys.
43
,
455409
(
2010
).
33.
S.
Biswas
,
M. H.
Khan
,
S.
Pal
, and
E.
Bose
,
J. Magn. Magn. Mater.
328
,
31
(
2013
).
34.
Y. S.
Nakashima
,
Y.
Nakamura
,
K. Y.
Yun
, and
M.
Okuyama
,
Jpn. J. Appl. Phys., Part 1
46
,
6952
(
2007
).
35.
I. G.
Ismailzade
,
V. I.
Nesterenko
,
F. A.
Mirishli
, and
P. G.
Rustamv
,
Sov. Phys. Crystallogr.
12
,
400
(
1967
).
36.
X. Y.
Mao
,
H.
Sun
,
W.
Wang
,
Y. L.
Lu
, and
X. B.
Chen
,
Solid State Commun.
152
,
483
(
2012
).
37.
C. H.
Wang
,
Z. F.
Liu
,
L.
Yu
,
Z. M.
Tian
, and
S. L.
Yuan
,
Mater. Sci. Eng. B
176
,
1243
(
2011
).
38.
H.
Naganuma
,
J.
Miura
, and
S.
Okamura
,
Appl. Phys. Lett.
93
,
052901
(
2008
).
39.
S. T.
Zhang
,
Y. F.
Chen
,
Z. G.
Liu
,
N. B.
Ming
,
J.
Wang
, and
G. X.
Cheng
,
J. Appl. Phys.
97
,
104106
(
2005
).
40.
A. K.
Jonscher
,
Dielectric Relaxation in Solids
(
Chelsea Dielectric Press
,
London
,
1983
).
41.
W.
Bai
,
G.
Chen
,
J. Y.
Zhu
,
J.
Yang
,
T.
Lin
,
X. J.
Meng
,
X. D.
Tang
,
C. G.
Duan
, and
J. H.
Chu
,
Appl. Phys. Lett.
100
,
082902
(
2012
).
42.
E.
Loudghiri
,
A.
Belayachi
,
M.
Nogues
,
M.
Taibi
,
A.
Dahmani
,
M. E.
Yamani
, and
J.
Aride
,
M. J. Condens. Matter.
3
,
98
(
2000
).
43.
A.
Punnoose
,
J.
Hays
,
A.
Thurber
,
M. H.
Engelhard
,
R. K.
Kukkadapu
,
C.
Wang
,
V.
Shutthanandan
, and
S.
Thevuthasan
,
Phys. Rev. B
72
,
054402
(
2005
).
44.
H. X.
Liu
,
B. B.
Cao
, and
C.
O'Connor
,
J. Appl. Phys.
109
,
07B516
(
2011
).
45.
N.
Dasari
,
P.
Mandal
,
A.
Sundaresan
, and
N. S.
Vidhyadhiraja
,
EPL
99
,
17008
(
2012
).
46.
J. B.
Goodenough
,
Magnetism and the Chemical Bond
(
Interscience Publishers
,
1963
).
You do not currently have access to this content.