The magnetic properties of Mg-doped BiFeO3 (BFO) with and without oxygen vacancies are studied through first-principles calculations. The Mg-doping prefers to occupy the ferromagnetic planes and produces an obvious improved magnetization, and the magnetization is linearly enhanced with increasing Mg-doped content, which is consistent with the trend reported in experiment. However, our calculated result is significantly larger than the experimental one, and the reason is revealed that the relative energy differences of various spin-ordering configurations are small. Furthermore, oxygen vacancy in Mg-doped BFO can further enhance the magnetization, while keeping the insulating band gap character. The calculated results imply that the oxygen vacancy in Mg-doped BFO would be an effective way to improve the multiferroicity of BFO.

1.
R.
Ramesh
and
N. A.
Spaldin
,
Nature Mater.
6
,
21
(
2007
).
2.
K. F.
Wang
,
J.-M.
Liu
, and
Z. F.
Ren
,
Adv. Phys.
58
,
321
(
2009
).
3.
S. W.
Cheong
and
M.
Mostovoy
,
Nature Mater.
6
,
13
(
2007
).
4.
G. A.
SmolenskiK
and
I. E.
Chupis
,
Sov. Phys. Usp.
25
,
475
(
1982
).
5.
J.
Wang
,
J.
Neaton
,
H.
Zheng
,
V.
Nagarajan
,
S.
Ogale
,
B.
Liu
,
D.
Viehland
,
V.
Vaithyanathan
,
D.
Schlom
, and
U.
Waghmare
,
Science
299
,
1719
(
2003
).
6.
J. B.
Neaton
,
C.
Ederer
,
U. V.
Waghmare
,
N. A.
Spaldin
, and
K. M.
Rabe
,
Phys. Rev. B
71
,
014113
(
2005
).
7.
G.
Catalan
and
J. F.
Scott
,
Adv. Mater.
21
,
2463
(
2009
).
8.
9.
B.
Ramachandran
,
A.
Dixit
,
R.
Naik
,
G.
Lawes
, and
M. S.
Ramachandra Rao
,
J. Appl. Phys.
111
,
023910
(
2012
).
10.
Y. H.
Gu
,
Y.
Wang
,
F.
Chen
,
H. L. W.
Chan
, and
W. P.
Chen
,
J. Appl. Phys.
108
,
094112
(
2010
).
11.
H.
Wu
,
Y.
Lin
,
J.
Gong
,
F.
Zhang
,
M.
Zeng
,
M.
Qin
,
Z.
Zhang
,
Q.
Ru
,
Z.
Liu
, and
X.
Gao
,
J. Phys. D: Appl. Phys.
46
,
145001
(
2013
).
12.
L. Y.
Zou
,
R. P.
Yang
,
Y. B.
Lin
,
M. H.
Qin
,
X. S.
Gao
,
M.
Zeng
, and
J.-M.
Liu
,
J. Appl. Phys.
114
,
034105
(
2013
).
13.
V. A.
Khomchenko
,
D. V.
Karpinsky
,
L. C. J.
Pereira
,
A. L.
Kholkin
, and
J. A.
Paixao
,
J. Appl. Phys.
113
,
214112
(
2013
).
14.
S. T.
Zhang
,
Y.
Zhang
,
M. H.
Lu
,
C. L.
Du
,
Y. F.
Chen
,
Z. G.
Liu
,
Y. Y.
Zhu
,
N. B.
Ming
, and
X. Q.
Pan
,
Appl. Phys. Lett.
88
,
162901
(
2006
).
15.
G. L.
Yuan
,
S. W.
Or
,
J. M.
Liu
, and
Z. G.
Liu
,
Appl. Phys. Lett.
89
,
052905
(
2006
).
16.
F. Z.
Qian
,
J. S.
Jiang
,
S. Z.
Guo
,
D. M.
Jiang
, and
W. G.
Zhang
,
J. Appl. Phys.
106
,
084312
(
2009
).
17.
S. K.
Srivastav
,
N. S.
Gajbhiye
, and
A.
Banerjee
,
J. Appl. Phys.
113
,
203917
(
2013
).
18.
L. H.
Yin
,
J.
Yang
,
B. C.
Zhao
,
Y.
Liu
,
S. G.
Tan
,
X. W.
Tang
,
J. M.
Dai
,
W. H.
Song
, and
Y. P.
Sun
,
J. Appl. Phys.
113
,
214104
(
2013
).
19.
C.
Ederer
and
N. A.
Spaldin
,
Phys. Rev. B
71
,
224103
(
2005
).
20.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
21.
V. I.
Anisimov
,
F.
Aryasetiawan
, and
A. I.
Lichtenstein
,
J. Phys.: Condens. Matter
9
,
767
(
1997
).
22.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
23.
G.
Kresse
and
J.
Furthmuller
,
Phys. Rev. B
54
,
11169
(
1996
).
24.
T. R.
Paudel
,
S. S.
Jaswal
, and
E. Y.
Tsymbal
,
Phys. Rev. B
85
,
104409
(
2012
).
25.
J. F.
Ihlefeld
,
N. J.
Podraza
,
Z. K.
Liu
,
R. C.
Rai
,
X.
Xu
,
T.
Heeg
,
Y. B.
Chen
,
J.
Li
,
R. W.
Collins
,
J. L.
Musfeldt
,
X. Q.
Pan
,
J.
Schubert
,
R.
Ramesh
, and
D. G.
Schlom
,
Appl. Phys. Lett.
92
,
142908
(
2008
).
26.
S. J.
Clark
and
J.
Robertson
,
Appl. Phys. Lett.
90
,
132903
(
2007
).
You do not currently have access to this content.