Since the discovery of graphene, a lot of interest has been attracted by the zeroth Landau level, which has no analog in the conventional two dimensional electron gas. Recently, lifting of the spin and valley degeneracies has been confirmed experimentally by capacitance measurements, while in transport experiments, this is difficult due to the scattering in the device. In this context, we model interaction effects on the quantum capacitance of graphene in the presence of a perpendicular magnetic field, finding good agreement with experiments. We demonstrate that the valley degeneracy is lifted by the substrate and by Kekule distortion, whereas the spin degeneracy is lifted by Zeeman interaction. The two cases can be distinguished by capacitance measurements.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
 et al., “
Electric field effect in atomically thin carbon films
,”
Science
306
,
666
669
(
2004
).
2.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. V.
Grigorieva
 et al., “
Two-dimensional gas of massless Dirac fermions in graphene
,”
Nature
438
,
197
200
(
2005
).
3.
Y.
Zhang
,
Y. W.
Tan
,
H. L.
Stormer
, and
P.
Kim
, “
Experimental observation of the quantum Hall effect and Berry's phase in graphene
,”
Nature
438
,
201
204
(
2005
).
4.
Y.
Zheng
and
T.
Ando
, “
Hall conductivity of a two-dimensional graphite system
,”
Phys. Rev. B
65
,
245420
(
2002
).
5.
V. P.
Gusynin
and
S. G.
Sharapov
, “
Unconventional integer quantum Hall effect in graphene
,”
Phys. Rev. Lett.
95
,
146801
(
2005
).
6.
N. M. R.
Perez
,
F.
Guinea
, and
A. H.
Castro Neto
, “
Electronic properties of disordered two-dimensional carbon
,”
Phys. Rev. B
73
,
125411
(
2006
).
7.
M. I.
Katsnelson
,
K. S.
Novoselov
, and
A. K.
Geim
, “
Chiral tunnelling and the Klein paradox in graphene
,”
Nat. Phys.
2
,
620
625
(
2006
).
8.
K. S.
Novoselov
,
E.
McCann
,
S. V.
Morozov
,
V. I.
Fal'ko
,
M. I.
Katsnelson
,
U.
Zeitler
 et al., “
Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene
,”
Nat. Phys.
2
,
177
180
(
2006
).
9.
T.
Ohta
,
A.
Bostwick
,
T.
Seyller
,
K.
Horn
, and
E.
Rotenberg
, “
Controlling the electronic structure of bilayer graphene
,”
Science
313
,
951
954
(
2006
).
10.
J. B.
Oostinga
,
H. B.
Heersche
,
X.
Liu
,
A. F.
Morpurgo
, and
L. M. K.
Vandersypen
, “
Gate-induced insulating state in bilayer graphene devices
,”
Nature Mater.
7
,
151
157
(
2008
).
11.
A. H. C.
Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
, “
The electronic properties of graphene
,”
Rev. Mod. Phys.
81
,
109
162
(
2009
).
12.
C.
Berger
,
Z.
Song
,
X.
Li
,
X.
Wu
,
N.
Brown
,
C.
Naud
 et al., “
Electronic confinement and coherence in patterned epitaxial graphene
,”
Science
312
,
1191
1196
(
2006
).
13.
R. S.
Deacon
,
K. C.
Chuang
,
R. J.
Nicholas
,
K. S.
Novoselov
, and
A. K.
Geim
, “
Cyclotron resonance study of the electron and hole velocity in graphene monolayers
,”
Phys. Rev. B
76
,
081406
R
(
2007
).
14.
S. Y.
Zhou
,
G. H.
Gweon
,
J.
Graf
,
A. V.
Fedorov
,
C. D.
Spataru
,
R. D.
Diehl
 et al., “
First direct observation of Dirac fermions in graphite
,”
Nat. Phys.
2
,
595
599
(
2006
).
15.
G.
Giovannetti
,
P. A.
Khomyakov
,
G.
Brocks
,
P. J.
Kelly
, and
J.
v. Brink
, “
Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations
,”
Phys. Rev. B
76
,
073103
(
2007
).
16.
C. R.
Dean
,
A. F.
Young
,
I.
Meric
,
C.
Lee
,
L.
Wang
,
S.
Sorgenfrei
 et al., “
Boron nitride substrates for high-quality graphene electronics
,”
Nat. Nanotechnol.
5
,
722
726
(
2010
).
17.
L.
Ci
,
L.
Song
,
C.
Jin
,
D.
Jariwala
,
D.
Wu
,
Y.
Li
 et al., “
Atomic layers of hybridized boron nitride and graphene domains
,”
Nature Mater.
9
,
430
435
(
2010
).
18.
P. M.
Krstajić
and
P.
Vasilopoulos
, “
Integer quantum Hall effect in gapped single-layer graphene
,”
Phys. Rev. B
86
,
115432
(
2012
).
19.
J.
Jung
,
Z.
Qiao
,
Q.
Niu
, and
A. H.
MacDonald
, “
Transport properties of graphene nanoroads in boron nitride sheets
,”
Nano Lett.
12
,
2936
2940
(
2012
).
20.
F.
Amet
,
J. R.
Williams
,
K.
Watanabe
,
T.
Taniguchi
, and
D. G.
Gordon
, “
Insulating behavior at the neutrality point in single-layer graphene
,”
Phys. Rev. Lett.
110
,
216601
(
2013
).
21.
D.
Xiao
,
W.
Yao
, and
Q.
Niu
, “
Valley-contrasting physics in graphene: Magnetic moment and topological transport
,”
Phys. Rev. Lett.
99
,
236809
(
2007
).
22.
A.
Rycerz
,
J.
Tworzydlo
, and
C. W. J.
Beenakker
, “
Valley filter and valley valve in graphene
,”
Nat. Phys.
3
,
172
175
(
2007
).
23.
V. P.
Gusynin
,
V. A.
Miransky
, and
I. A.
Shovkovy
, “
Catalysis of dynamical flavor symmetry breaking by a magnetic field in 2 + 1 dimensions
,”
Phys. Rev. Lett.
73
,
3499
(
1994
).
24.
H. A.
Fertig
and
L.
Brey
, “
Luttinger liquid at the edge of undoped graphene in a strong magnetic field
,”
Phys. Rev. Lett.
97
,
116805
(
2006
).
25.
V. P.
Gusynin
,
V. A.
Miransky
,
S. G.
Sharapov
, and
I. A.
Shovkovy
, “
Excitonic gap, phase transition, and quantum Hall effect in graphene
,”
Phys. Rev. B
74
,
195429
(
2006
).
26.
D. V.
Khveshchenko
, “
Magnetic-field-induced insulating behavior in highly oriented pyrolitic graphite
,”
Phys. Rev. Lett.
87
,
206401
(
2001
).
27.
J.
Alicea
and
M. P. A.
Fisher
, “
Graphene integer quantum Hall effect in the ferromagnetic and paramagnetic regimes
,”
Phys. Rev. B
74
,
075422
(
2006
).
28.
J. N.
Fuchs
and
P.
Lederer
, “
Spontaneous parity breaking of graphene in the quantum hall regime
,”
Phys. Rev. Lett.
98
,
016803
(
2007
).
29.
G.
Li
,
A.
Luican
, and
E. Y.
Andrei
, “
Scanning tunneling spectroscopy of graphene on graphite
,”
Phys. Rev. Lett.
102
,
176804
(
2009
).
30.
C. Y.
Hou
,
C.
Chamon
, and
C.
Mudry
, “
Deconfined fractional electric charges in graphene at high magnetic fields
,”
Phys. Rev. B
81
,
075427
(
2010
).
31.
K.
Nomura
and
A. H.
MacDonald
, “
Quantum Hall ferromagnetism in graphene
,”
Phys. Rev. Lett.
96
,
256602
(
2006
).
32.
M. O.
Goerbig
,
R.
Moessner
, and
B.
Doucot
, “
Electron interactions in graphene in a strong magnetic field
,”
Phys. Rev. B
74
,
161407
(
2006
).
33.
D. A.
Abanin
,
P. A.
Lee
, and
L. S.
Levitov
, “
Randomness-induced XY ordering in a graphene quantum Hall ferromagnet
,”
Phys. Rev. Lett.
98
,
156801
(
2007
).
34.
A. H.
Castro Neto
,
F.
Guinea
, and
N. M. R.
Peres
, “
Edge and surface states in the quantum Hall effect in graphene
,”
Phys. Rev. B
73
,
205408
(
2006
).
35.
D. A.
Abanin
,
P. A.
Lee
, and
L. S.
Levitov
, “
Spin-filtered edge states and quantum Hall effect in graphene
,”
Phys. Rev. Lett.
96
,
176803
(
2006
).
36.
Y.
Zhang
,
Z.
Jiang
,
J. P.
Small
,
M. S.
Purewal
,
Y. W.
Tan
,
M.
Fazlollahi
 et al., “
Landau-level splitting in graphene in high magnetic fields
,”
Phys Rev. Lett.
96
,
136806
(
2006
).
37.
J. G.
Checkelsky
,
L.
Li
, and
N. P.
Ong
, “
Divergent resistance at the Dirac point in graphene: Evidence for a transition in a high magnetic field
,”
Phys. Rev. B
79
,
115434
(
2009
).
38.
Y.
Zhao
,
P. C.
Zimansky
,
F.
Ghahari
, and
P.
Kim
, “
Magnetoresistance measurements of graphene at the charge neutrality point
,”
Phys. Rev. Lett.
108
,
106804
(
2012
).
39.
A. F.
Young
,
C. R.
Dean
,
L.
Wang
,
H.
Ren
,
P. C.
Zimansky
,
K.
Watanabe
 et al., “
Spin and valley quantum Hall ferromagnetism in graphene
,”
Nat. Phys.
8
,
550
556
(
2012
).
40.
G. L.
Yu
,
R.
Jalil
,
B.
Belle
,
A. S.
Mayorov
,
P.
Blake
,
F.
Schedin
 et al., “
Interaction phenomena in graphene seen through quantum capacitance
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
3282
3286
(
2013
).
41.
T.
Ando
,
A. B.
Fowler
, and
F.
Stern
, “
Electronic properties of two-dimensional systems
,”
Rev. Mod. Phys.
54
,
437
672
(
1982
).
42.
A.
Isihara
, “
Low temperature properties of two-dimensional electrons
,”
Phys. Scr.
32
,
26
(
1985
).
43.
A.
Isihara
and
L.
Smrcka
, “
Density and magnetic field dependences of the conductivity of two-dimensional electron systems
,”
J. Phys. C
19
,
6777
(
1986
).
44.
S.
Ilani
,
L. A. K.
Donev
,
M.
Kindermann
, and
P. L.
McEuen
, “
Measurement of the quantum capacitance of interacting electrons in carbon nanotubes
,”
Nat. Phys.
2
,
687
691
(
2006
).
45.
J.
Guo
,
Y.
Yoon
, and
Y.
Ouyang
, “
Gate electrostatics and quantum capacitance of graphene nanoribbons
,”
Nano Lett.
7
,
1935
1940
(
2007
).
46.
T.
Fang
,
A.
Konar
,
H. L.
Xing
, and
D.
Jena
, “
Carrier statistics and quantum capacitance of graphene sheets and ribbons
,”
Appl. Phys. Lett.
91
,
092109
(
2007
).
47.
A. A.
Shylau
,
J. W.
Kłos
, and
I. V.
Zozoulenko
, “
Capacitance of graphene nanoribbons
,”
Phys. Rev. B
80
,
205402
(
2009
).
48.
J.
Xia
,
F.
Chen
,
J.
Li
, and
N.
Tao
, “
Measurement of the quantum capacitance of graphene
,”
Nat. Nanotechnol.
4
,
505
509
(
2009
).
49.
F.
Giannazzo
,
S.
Sonde
,
V.
Raineri
, and
E.
Rimini
, “
Screening length and quantum capacitance in graphene by scanning probe microscopy
,”
Nano Lett.
9
,
23
29
(
2009
).
50.
L. A.
Ponomarenko
,
R.
Yang
,
R. V.
Gorbachev
,
P.
Blake
,
A. S.
Mayorov
,
K. S.
Novoselov
 et al., “
Density of states and zero Landau level probed through capacitance of graphene
,”
Phys. Rev. Lett.
105
,
136801
(
2010
).
51.
R. B.
Dingle
, “
Some magnetic properties of metals. II. The influence of collisions on the magnetic behaviour of large systems
,”
Proc. R. Soc. London, Ser. A
211
,
517
525
(
1952
).
52.
A.
Isihara
and
L.
Smrcka
, “
Effects of level broadening on the magnetothermal oscillations in two-dimensional electron systems
,”
J. Phys. C
18
,
4703
(
1985
).
53.
M.
Tahir
and
U.
Schwingenschlögl
, “
Beating of magnetic oscillations in a graphene device probed by quantum capacitance
,”
Appl. Phys. Lett.
101
,
013114
(
2012
).
54.
T.
Stauber
,
N. M.
Peres
, and
F.
Guinea
, “
Electronic transport in graphene: A semiclassical approach including midgap states
,”
Phys. Rev. B
76
,
205423
(
2007
).
55.
S.
Cho
and
M. S.
Fuhrer
, “
Charge transport and inhomogeneity near the minimum conductivity point in graphene
,”
Phys. Rev. B
77
,
081402
(
2008
).
56.
W.
Zhu
,
Q. W.
Shi
,
X. R.
Wang
,
J.
Chen
,
J. L.
Yang
, and
J. G.
Hou
, “
Shape of disorder-broadened Landau subbands in graphene
,”
Phys. Rev. Lett.
102
,
056803
(
2009
).
57.
K.
Nomura
,
S.
Ryu
, and
D. H.
Lee
, “
Field-induced Kosterlitz-Thouless transition in the N = 0 Landau level of graphene
,”
Phys. Rev. Lett.
103
,
216801
(
2009
).
58.
P. M.
Krstajić
and
P.
Vasilopoulos
, “
Integral quantum Hall effect in graphene: Zero and finite Hall field
,”
Phys. Rev. B
83
,
075427
(
2011
).
59.
W.
Zhu
,
H. Y.
Yuan
,
Q. W.
Shi
,
J. G.
Hou
, and
X. R.
Wang
, “
Shape of the Landau subbands in disordered graphene
,”
Phys. Rev. B
83
,
153408
(
2011
).
60.
K. S.
Novoselov
,
Z.
Jiang
,
Y.
Zhang
,
S. V.
Morozov
,
H. L.
Stormer
,
U.
Zeitler
 et al., “
Room-temperature quantum Hall effect in graphene
,”
Science
315
,
1379
(
2007
).
You do not currently have access to this content.