The electronic structure of bulk zinc-blende GaAs, zinc-blende and tetragonal CrAs, and CrAs/GaAs supercells, computed within linear muffin-tin orbital (LMTO) local spin-density functional theory, is used to extract the band alignment for the [1,0,0] GaAs/CrAs interface in dependence of the spin orientation. With the lateral lattice constant fixed to the experimental bulk GaAs value, a local energy minimum is found for a tetragonal CrAs unit cell with a longitudinal ([1,0,0]) lattice constant reduced by ≈2%. Due to the identified spin-dependent band alignment, half-metallicity of CrAs no longer is a key requirement for spin-filtering. Based on these findings, we study the spin-dependent tunneling current in [1,0,0] GaAs/CrAs/GaAs heterostructures within the non-equilibrium Green's function approach for an effective tight-binding Hamiltonian derived from the LMTO electronic structure. Results indicate that these heterostructures are promising candidates for efficient room-temperature all-semiconductor spin-filtering devices.

1.
I.
Zutic
,
J.
Fabian
, and
S. D.
Sarma
, “
Spintronics: Fundamentals and applications
,”
Rev. Mod. Phys.
76
,
323
410
(
2004
).
2.
J.
Fabian
,
A.
Matos-Abiague
,
C.
Ertler
,
P.
Stano
, and
I.
Zutic
, “
Semiconductor spintronics
,”
Acta Phys. Slovaca Rev. Tutorials
57
,
565
907
(
2007
).
3.
K. S.
Burch
,
D. D.
Awschalom
, and
D. N.
Basov
, “
Optical properties of III-Mn-V ferromagnetic semiconductors
,”
J. Magn. Magn. Mater.
320
(
23
),
3207
3228
(
2008
).
4.
K.
Sato
,
L.
Bergqvist
,
J.
Kudrnovský
,
P. H.
Dederichs
,
O.
Eriksson
,
I.
Turek
,
B.
Sanyal
,
G.
Bouzerar
,
H.
Katayama-Yoshida
,
V. A.
Dinh
,
T.
Fukushima
,
H.
Kizaki
, and
R.
Zeller
, “
First-principles theory of dilute magnetic semiconductors
,”
Rev. Mod. Phys.
82
,
1633
1690
(
2010
).
5.
C.
Ertler
and
W.
Pötz
, “
Disorder effects on resonant tunneling transport in GaAs/(Ga, Mn)as heterostructures
,”
Phys. Rev. B
86
,
155427
(
2012
).
6.
S.
Ohya
,
K.
Takata
, and
M.
Tanaka
,
Nat. Phys.
7
,
342
(
2011
).
7.
E.
Likovich
,
K.
Russell
,
W.
Yi
,
V.
Narayanamurti
,
Keh -Chiang
Ku
,
M.
Zhu
, and
N.
Samarth
, “
Magnetoresistance in an asymmetric Ga1xMnxAs resonant tunneling diode
,”
Phys. Rev. B
80
,
201307
(
2009
).
8.
I.
Muneta
,
S.
Ohya
, and
M.
Tanaka
, “
Spin-dependent tunneling transport in a ferromagnetic GaMnAs and un-doped GaAs double-quantum-well heterostructure
,”
Appl. Phys. Lett.
100
(
16
),
162409
(
2012
).
9.
S.
Sanvito
and
N. A.
Hill
, “
Ground state of half-metallic zinc-blende MnAs
,”
Phys. Rev. B
62
,
15553
15560
(
2000
).
10.
Yu -Jun
Zhao
and
A.
Zunger
, “
Zinc-blende half-metallic ferromagnets are rarely stabilized by coherent epitaxy
,”
Phys. Rev. B
71
,
132403
(
2005
).
11.
S. J.
Hashemifar
,
P.
Kratzer
, and
M.
Scheffler
, “
Stable structure and magnetic state of ultrathin CrAs films on GaAs (001): A density functional theory study
,”
Phys. Rev. B
82
,
214417
(
2010
).
12.
P.
Mavropoulos
and
I.
Galanakis
, “
A review of the electronic and magnetic properties of tetrahedrally bonded half-metallic ferromagnets
,”
J. Phys.: Condens. Matter
19
(
31
),
315221
(
2007
).
13.
K.
Ono
,
J.
Okabayashi
,
M.
Mizuguchi
,
M.
Oshima
,
A.
Fujimori
, and
H.
Akinaga
, “
Fabrication, magnetic properties, and electronic structures of nanoscale zinc-blende MnAs dots (invited)
,”
J. Appl. Phys.
91
(
10
),
8088
8092
(
2002
).
14.
H.
Akinaga
,
T.
Manago
, and
M.
Shirai
, “
Material design of half-metallic zinc-blende CrAs and the synthesis by molecular-beam epitaxy
,”
Jpn. J. Appl. Phys., Part 2
39
(
11B
),
L1118
L1120
(
2000
).
15.
M.
Mizuguchi
,
H.
Akinaga
,
T.
Manago
,
K.
Ono
,
M.
Oshima
,
M.
Shirai
,
M.
Yuri
,
H. J.
Lin
,
H. H.
Hsieh
, and
C. T.
Chen
, “
Epitaxial growth of zinc-blende CrAs/GaAs multilayer
,”
J. Appl. Phys.
91
(
10
),
7917
7919
(
2002
).
16.
M.
Mizuguchi
,
H.
Akinaga
,
T.
Manago
,
K.
Ono
,
M.
Oshima
, and
M.
Shirai
, “
Epitaxial growth of new half-metallic ferromagnet “zinc-blende CrAs” and the substrate temperature dependence
,”
J. Magn. Magn. Mater.
239
(
1-3
),
269
271
(
2002
).
17.
J. F.
Bi
,
J. H.
Zhao
,
J. J.
Deng
,
Y. H.
Zheng
,
S. S.
Li
,
X. G.
Wu
, and
Q. J.
Jia
, “
Room-temperature ferromagnetism in zinc-blende and deformed CrAs thin films
,”
Appl. Phys. Lett.
88
(
14
),
142509
(
2006
).
18.
A.
Sakuma
, “
Stability of half-metallic ferromagnetism of zinc-blende type CrAs and MnM (M = Si, Ge, and Sn)
,”
J. Phys. Soc. Jpn.
71
(
10
),
2534
2538
(
2002
).
19.
J.
Kübler
, “
Curie temperatures of zinc-blende half-metallic ferromagnets
,”
Phys. Rev. B
67
,
220403
(
2003
).
20.
I.
Galanakis
and
E.
Sasioglu
, “
Stability of ferromagnetism against doping in half-metallic alloys
,”
J. Appl. Phys.
109
(
11
),
113912
(
2011
).
21.
I.
Galanakis
and
P.
Mavropoulos
, “
Zinc-blende compounds of transition elements with N, P, As, Sb, S, Se, and Te as half-metallic systems
,”
Phys. Rev. B
67
,
104417
(
2003
).
22.
O.
Bengone
,
O.
Eriksson
,
J.
Fransson
,
I.
Turek
,
J.
Kudrnovský
, and
V.
Drchal
, “
Electronic structure and transport properties of CrAs/GaAs/CrAs trilayers from first principles theory
,”
Phys. Rev. B
70
,
035302
(
2004
).
23.
M.
Shirai
, “
The computational design of zinc-blende half-metals and their nanostructures
,”
J. Phys.: Condens. Matter
16
,
S5525
(
2004
).
24.
K.
Takamura
and
C.
Peng
, “
Magnetic and electrical properties of zincblende CrAs
,”
Chin. Phys. B
17
(
6
),
2204
2207
(
2008
).
25.
B.
Jing-Feng
,
Z.
Jian-Hua
,
Z.
Yu-Hong
,
W.
Wei-Zhu
,
L.
Juna
,
J.
Yang
,
L.
Shu-Shen
, and
D.
Jia-Jun
, “
Growth parameter dependence of magnetic property of CrAs thin film
,”
Chin. Phys. B
16
(
12
),
3868
3872
(
2007
).
26.
K.
Yagyu
,
D.
Komamiya
, and
J.
Yoshino
, “
Initial adsorption of Cr atoms on GaAs (0,0,1)
,”
Physica E
43
,
773
775
(
2011
).
27.
W. H.
Wang
,
T.
Manago
, and
H.
Akinaga
, “
Epitaxial growth and characterization of zinc-blende CrAs/GaAs/MnAs/GaAs multilayers
,”
J. Magn.
11
(
1
),
1
4
(
2006
).
28.
M.
Yamada
,
K.
Ono
,
M.
Mizuguchi
,
J.
Okabayashi
,
M.
Oshima
,
M.
Yuri
,
H. J.
Lin
,
H. H.
Hsieh
,
C. T.
Chen
, and
H.
Akinaga
, “
Growth of ferromagnetic semiconductor: (Ga, Cr)As
,”
J. Appl. Phys.
91
(
10
),
7908
7910
(
2002
).
29.
L.
Chioncel
,
I.
Leonov
,
H.
Allmaier
,
F.
Beiuseanu
,
E.
Arrigoni
,
T.
Jurcut
, and
W.
Pötz
, “
Electronic correlations in short-period (CrAs)n/(GaAs)n ferromagnetic heterostructures
,”
Phys. Rev. B
83
,
035307
(
2011
).
30.
F.
Beiuşeanu
,
C.
Horea
,
E.-V.
Macocian
,
T.
Jurcuţ
,
L.
Vitos
, and
L.
Chioncel
, “
Absence of half-metallicity in defect-free digital magnetic heterostructures δ-doped with Cr and Mn
,”
Phys. Rev. B
83
,
125107
(
2011
).
31.
V. H.
Etgens
,
P. C.
de Camargo
,
M.
Eddrief
,
R.
Mattana
,
J. M.
George
, and
Y.
Garreau
, “
Structure of ferromagnetic CrAs epilayers grown on GaAs (001)
,”
Phys. Rev. Lett.
92
,
167205
(
2004
).
32.
G.
Strasser
, private communications (
2012
).
33.
A. D.
Carlo
, “
Microscopic theory of nanostructured semiconductor devices: Beyond the envelope-function approximation
,”
Semicond. Sci. Technol.
18
(
1
),
R1
(
2003
).
34.
J. A.
Støvneng
and
P.
Lipavský
, “
Multiband tight-binding approach to tunneling in semiconductor heterostructures: Application to γ X transfer in GaAs
,”
Phys. Rev. B
49
,
16494
16504
(
1994
).
35.
S.
Datta
,
Electronic Transport in Mesoscopic Systems
, Cambridge Studies in Semiconductor Physics and Microelectronic Engineering (
Cambridge University Press
,
1999
).
36.
T. B.
Boykin
,
J. P. A.
van der Wagt
, and
J. S.
Harris
, “
Tight-binding model for GaAs/AlAs resonant-tunneling diodes
,”
Phys. Rev. B
43
,
4777
4784
(
1991
).
37.
O.
Jepsen
and
O. K.
Andersen
,
The Stuttgart LMTO-TB Program
(
Max Planck Institut für Festkörperforschung
,
Stuttgart
,
2000
).
38.
H.
Skriver
,
The LMTO Method: Muffin Tin Orbitals and Electronic Structure
(
Springer
,
Berlin
,
1984
).
39.
L.
Chioncel
,
M. I.
Katsnelson
,
G. A.
de Wijs
,
R. A.
de Groot
, and
A. I.
Lichtenstein
, “
Tunable spin transport in CrAs: Role of correlation effects
,”
Phys. Rev. B
71
,
085111
(
2005
).
40.
A.
Georges
,
G.
Kotliar
,
W.
Krauth
, and
M. J.
Rozenberg
, “
Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions
,”
Rev. Mod. Phys.
68
,
13
125
(
1996
).
41.
C.
Gros
and
R.
Valentí
, “
Cluster expansion for the self-energy: A simple many-body method for interpreting the photoemission spectra of correlated fermi systems
,”
Phys. Rev. B
48
,
418
425
(
1993
).
42.
M.
Potthoff
,
M.
Aichhorn
, and
C.
Dahnken
, “
Variational cluster approach to correlated electron systems in low dimensions
,”
Phys. Rev. Lett.
91
,
206402
(
2003
).
43.
Su -Huai
Wei
and
A.
Zunger
, “
Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals
,”
Appl. Phys. Lett.
72
(
16
),
2011
2013
(
1998
).
44.
J. C.
Slater
and
G. F.
Koster
, “
Simplified LCAO method for the periodic potential problem
,”
Phys. Rev.
94
,
1498
1524
(
1954
).
45.
Jean -Marc
Jancu
,
R.
Scholz
,
F.
Beltram
, and
F.
Bassani
, “
Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters
,”
Phys. Rev. B
57
,
6493
6507
(
1998
).
46.
F.
Starrost
,
S.
Bornholdt
,
C.
Solterbeck
, and
W.
Schattke
, “
Band-structure parameters by genetic algorithm
,”
Phys. Rev. B
53
,
12549
12552
(
1996
).
47.
M.
Brandbyge
,
José -Luis
Mozos
,
P.
Ordejón
,
J.
Taylor
, and
K.
Stokbro
, “
Density-functional method for nonequilibrium electron transport
,”
Phys. Rev. B
65
,
165401
(
2002
).
48.
C.
Ertler
,
W.
Pötz
, and
J.
Fabian
, “
Proposal for a ferromagnetic multiwell spin oscillator
,”
Appl. Phys. Lett.
97
(
4
),
042104
(
2010
).
49.
C.
Ertler
and
W.
Pötz
, “
Electrical control of ferromagnetism and bias anomaly in Mn-doped semiconductor heterostructures
,”
Phys. Rev. B
84
,
165309
(
2011
).
50.
B. A.
Stickler
and
W.
Pötz
, “
Charge transport through interfaces: A tight-binding toy model and its implications
,”
J. Comput. Electron.
12
,
490
500
(
2013
).
51.

Note that the SIESTA DFT approach, too, employs an ad-hoc approximation at the interface, which may be regarded as rather questionable.47 

52.
M.
Di Ventra
,
Electrical Transport in Nanoscale Systems
(
Cambridge University Press
,
Cambridge
,
2008
).
53.
W. A.
Harrison
,
Elementary Electronic Structure
(
World Scientific
,
Singapore
,
1999
).
54.
R.
Lake
,
G.
Klimeck
,
R. C.
Bowen
, and
D.
Jovanovic
, “
Single and multiband modeling of quantum electron transport through layered semiconductor devices
,”
J. Appl. Phys.
81
(
12
),
7845
7869
(
1997
).
55.
C.
Strahberger
and
P.
Vogl
, “
Model of room-temperature resonant-tunneling current in metal/insulator and insulator/insulator heterostructures
,”
Phys. Rev. B
62
,
7289
7297
(
2000
).
56.
D. J.
Chadi
, “
Spin-orbit splitting in crystalline and compositionally disordered semiconductors
,”
Phys. Rev. B
16
,
790
796
(
1977
).
57.
M. P. L.
Sancho
,
J. M. L.
Sancho
,
J. M. L.
Sancho
, and
J.
Rubio
, “
Highly convergent schemes for the calculation of bulk and surface green functions
,”
J. Phys. F: Met. Phys.
15
(
4
),
851
(
1985
).
58.
W.
Pötz
, “
Current response in semiconductor heterostructures within the independent-electron picture
,”
J. Appl. Phys.
71
(
5
),
2297
2302
(
1992
).
59.
W.
Pötz
, “
Self-consistent model of transport in quantum well tunneling structures
,”
J. Appl. Phys.
66
(
6
),
2458
2466
(
1989
).
60.
L.
Damewood
and
C. Y.
Fong
, “
Local field effects in half-metals: A GW study of zincblende CrAs, MnAs, and MnC
,”
Phys. Rev. B
83
,
113102
(
2011
).
61.
J. J.
Deng
,
J. H.
Zhao
,
J. F.
Bi
,
Z. C.
Niu
,
F. H.
Yang
,
X. G.
Wu
, and
H. Z.
Zheng
, “
Growth of thicker zinc-blende CrSb layers by using (In, Ga)as buffer layers
,”
J. Appl. Phys.
99
,
093902
(
2006
).
62.
J. D.
Aldous
,
C. W.
Burrows
,
A. M.
Sánchez
,
R.
Beanland
,
I.
Maskery
,
M. K.
Bradley
,
M.
dos Santos Dias
,
J. B.
Staunton
, and
G. R.
Bell
, “
Cubic MnSb: Epitaxial growth of a predicted room temperature half-metal
,”
Phys. Rev. B
85
,
060403
R
(
2012
).
You do not currently have access to this content.