Amorphous carbon and amorphous materials in general are of particular importance for high resolution electron microscopy, either for bulk materials, generally covered with an amorphous layer when prepared by ion milling techniques, or for nanoscale objects deposited on amorphous substrates. In order to quantify the information of the high resolution images at the atomic scale, a structural modeling of the sample is necessary prior to the calculation of the electron wave function propagation. It is thus essential to be able to reproduce the carbon structure as close as possible to the real one. The approach we propose here is to simulate a realistic carbon from an energetic model based on the tight-binding approximation in order to reproduce the important structural properties of amorphous carbon. At first, we compare this carbon with the carbon obtained by randomly generating the carbon atom positions. In both cases, we discuss the limit thickness of the phase object approximation. In a second step, we show the influence of both carbons models on (i) the contrast of Cu, Ag, and Au single atoms deposited on carbon and (ii) the determination of the long-range order parameter in CoPt bimetallic nanoalloys.

1.
D.
Alloyeau
,
T.
Oikawa
,
J.
Nelayah
,
G.
Wang
, and
C.
Ricolleau
,
Appl. Phys. Lett.
101
,
121920
(
2012
).
2.
D.
Alloyeau
,
B.
Freitag
,
S.
Dag
,
Lin W.
Wang
, and
C.
Kisielowski
,
Phys. Rev. B
80
,
014114
(
2009
).
3.
B.
Gamm
,
H.
Blank
,
R.
Popescu
,
R.
Schneider
,
A.
Beyer
,
A.
Gölzhäuser
, and
D.
Gerthsen
,
Microsc. Microanal.
18
,
212
(
2012
).
4.
C. O.
Girit
,
J. C.
Meyer
,
R.
Erni
,
M. D.
Rossell
,
C.
Kisielowski
,
L.
Yang
,
C.-H.
Park
,
M. F.
Crommie
,
M. L.
Cohen
,
S. G.
Louie
, and
A.
Zettl
,
Science
323
,
1705
(
2009
).
5.
C.
Kisielowski
,
Q. M.
Ramasse
,
L. P.
Hansen
,
M.
Brorson
,
A.
Carlsson
,
A. M.
Molenbroek
,
H.
Topsoe
, and
S.
Helveg
,
Angew. Chem., Int. Ed.
49
,
2708
(
2010
).
6.
D.
Alloyeau
,
C.
Ricolleau
,
T.
Oikawa
,
C.
Langlois
,
Y.
Le Bouar
, and
A.
Loiseau
,
Ultramicroscopy
109
,
788
796
(
2009
).
7.
M.
Valamanesh
,
C.
Langlois
,
D.
Alloyeau
,
E.
Lacaze
, and
C.
Ricolleau
,
Ultramicroscopy
111
,
149
154
(
2011
).
8.
P. L.
Gai
,
M. J.
Goringe
, and
J. C.
Barry
,
J. Microscopy
142
,
9
(
1986
).
9.
H.
Schultrich
and
B.
Schultrich
,
Ultramicroscopy
88
,
111
(
2001
).
10.
O. L.
Krivanek
,
P. H.
Gaskell
, and
A.
Howie
,
Nature
262
,
454
(
1976
).
11.
J. P.
Chevalier
and
M. J.
Hytch
,
Ultramicroscopy
52
,
253
(
1993
).
12.
13.
14.
H. S.
Baik
,
T.
Epicier
, and
E.
Van Cappellen
,
Eur. Phys. J.: Appl. Phys.
4
,
11
(
1998
).
15.
M. M. J.
Treacy
and
J. M.
Gibson
,
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
52
,
212
(
1998
).
16.
H.
Amara
,
J. M.
Roussel
,
J. P.
Gaspard
,
C.
Bichara
, and
F.
Ducastelle
,
Phys. Rev. B
79
,
014109
(
2009
).
17.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
,
5262
(
1985
).
18.
N. A.
Marks
,
Phys. Rev. B
63
,
035401
(
2000
).
19.
20.
21.
J. H.
Los
,
L. M.
Ghiringhelli
,
E. J.
Meijer
, and
A.
Fasolino
,
Phys. Rev. B
72
,
214102
(
2005
).
22.
A. C. T.
van Duin
,
S.
Dasgupta
,
F.
Lorant
, and
W. A.
Goddard
 III
,
J. Phys. Chem. A
105
,
9396
(
2001
).
23.
C. H.
Xu
,
C. Z.
Wang
,
C. T.
Chan
, and
K. M.
Ho
,
J. Phys.: Condens. Matter
4
,
6047
(
1992
).
24.
D.
Porezag
,
Th.
Frauenheim
,
Th.
Kohler
,
G.
Seifert
, and
R.
Kaschner
,
Phys. Rev. B
51
,
12947
(
1995
).
25.
D. G.
Pettifor
and
I. I.
Oleinik
,
Phys. Rev. B
59
,
8487
(
1999
).
26.
R.
Haydock
,
V.
Heine
, and
M. J.
Kelly
,
J. Phys. C
5
,
2845
(
1972
).
27.
D.
Frenkel
and
B.
Smit
,
Understanding Computer Simulation
(
Academic Press
,
London
,
1996
).
28.
J. H.
Los
,
C.
Bichara
, and
R. J. M.
Pellenq
,
Phys. Rev. B
84
,
085455
(
2011
).
29.
D. R.
McKenzie
,
D.
Muller
, and
B. A.
Pailthorpe
,
Phys. Rev. Lett.
67
,
773
(
1991
).
30.
S. K.
Jain
,
R. J.-M.
Pellenq
,
J. P.
Pikunic
, and
K. E.
Gubbins
,
Langmuir
22
,
9942
(
2006
).
31.
See supplementary material at http://dx.doi.org/10.1063/1.4831669 for downloading the.xyz files that contain the carbon atomic positions of the amorphous carbon blocks generated by using the tight-binding model.
32.
P. A.
Stadelmann
,
Ultramicroscopy
21
,
131
(
1987
).
33.
E. J.
Kirkland
,
Advanced Computing in Electron Microscopy
(
Springer
,
2009
).
34.
L.-M.
Peng
,
G.
Ren
,
S. L.
Dudarev
, and
M. J.
Whelan
,
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
52
,
257
(
1996
).
35.
C.
Ricolleau
,
J.
Nelayah
,
T.
Oikawa
,
Y.
Kohno
,
N.
Braidy
,
G.
Wang
,
F.
Hue
, and
D.
Alloyeau
,
JEOL News
47
,
2
(
2012
); available at http://www.jeolusa.com/NEWSEVENTS/JEOLNEWSMagazine/tabid/275/Default.aspx.
36.
D.
Gratias
and
R.
Portier
,
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr
39
,
576
(
1983
).
37.
D.
Alloyeau
,
G.
Prévot
,
Y.
Le Bouar
,
T.
Oikawa
,
C.
Langlois
,
A.
Loiseau
, and
C.
Ricolleau
,
Phys. Rev. Lett.
105
,
255901
(
2010
).
38.
I. M.
Lifshitz
and
V. V.
Slyozov
,
J. Phys. Chem. Solids
19
,
35
(
1961
).
39.
C.
Wagner
,
Z. Elektrochem.
65
,
581
(
1961
).
40.
D.
Alloyeau
,
C.
Langlois
,
C.
Ricolleau
,
Y.
Le Bouar
, and
A.
Loiseau
,
Nanotechnol.
18
,
375301
(
2007
).
41.
W. W.
Pai
,
A. K.
Swan
,
Z.
Zhang
, and
J. F.
Wendelken
,
Phys. Rev. Lett.
79
,
3210
(
1997
).
42.
M.
Zinke-Allmang
,
L. C.
Feldman
, and
M. H.
Grabow
,
Surf. Sci. Rep.
16
,
377
(
1992
).
43.
G.
Palasantzas
,
T.
Vystavel
,
S. A.
Koch
, and
J. T. M.
De Hosson
,
J. Appl. Phys.
99
,
024307
(
2006
).
44.
A.
Rose
,
Advances Electronics and Electron Physics
(
Academic Press
,
New York
,
1948
).
45.
N.
Blanc
,
F.
Tournus
,
V.
Dupuis
, and
T.
Epicier
,
Phys. Rev. B
83
,
092403
(
2011
).
46.
K.
Sato
,
Y.
Hirotsu
,
H.
Mori
,
Z.
Wang
, and
T.
Hirayama
,
J. Appl. Phys.
97
,
084301
(
2005
).
47.
K.
Sato
,
Y.
Hirotsu
,
H.
Mori
,
Z.
Wang
, and
T.
Hirayama
,
J. Appl. Phys.
98
,
024308
(
2005
).
48.
T.
Miyazaki
,
O.
Kitakami
,
S.
Okamoto
,
Y.
Shimada
,
Z.
Akase
,
Y.
Murakami
,
D.
Shindo
,
Y. K.
Takahashi
, and
K.
Hono
,
Phys. Rev. B
72
,
144419
(
2005
).
49.
D.
Alloyeau
,
C.
Ricolleau
,
C.
Mottet
,
T.
Oikawa
,
C.
Langlois
,
Y.
Le Bouar
,
N.
Braidy
, and
A.
Loiseau
,
Nature Mater.
8
,
940
(
2009
).
50.
L.
Castaldi
,
K.
Giannakopoulos
,
A.
Travlos
,
D.
Niarchos
,
S.
Boukari
, and
E.
Beaurepaire
,
J. Magn. Magn. Mater.
290–291
,
544
(
2005
).
51.
Y.
Sui
,
L.
Yue
,
R.
Skomski
,
X. Z.
Li
,
J.
Zhou
, and
D. J.
Sellmyer
,
J. Appl. Phys.
93
,
7571
(
2003
).
52.
G.
Rossi
,
R.
Ferrando
, and
C.
Mottet
,
Faraday Discuss.
138
,
193
(
2008
).
53.
P.
Moskovkin
,
S.
Pisov
,
M.
Hou
,
C.
Raufast
,
F.
Tournus
,
L.
Favre
, and
V.
Dupuis
,
Eur. Phys. J. D
43
,
27
(
2007
).
54.
A.
Kashyap
,
K. B.
Garg
,
A. K.
Solanki
,
T.
Nautiyal
, and
S.
Auluck
,
Phys. Rev. B
60
,
2262
(
1999
).
55.
S.
Karoui
,
H.
Amara
,
B.
Legrand
, and
F.
Ducastelle
,
J. Phys.: Condens. Matter
25
,
056005
(
2013
).

Supplementary Material

You do not currently have access to this content.